®

Macintosh*Technical Notes

HyperCard’ Stack 1985-88

Version 3.0
APDA # M0215LL/A

SR % O
R) G e R
e e
o
5 AR S 2
GeARas R

5
&
3
AT

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

TLX 171-576

To reorder products, please call:

Apple Programmers and Developers Association
1-800-282-APDA

Macintosh Tech Notes Stack 1985-88

Version 3.0
Release Note June 1, 1989

© Apple Computer, inc. 1989

Stufflt 1.5.1 is referred to on page 4 of the User's Guide. In this version of the
Tech Notes Stack product, UnStufflt was shipped in place of Stufflt.

It you already have Stufflt {version 1.5.1 or later), you can use it in place of
UnStufflt. Otherwise, use UnStuffit to uncompress the Tech Notes Stack.

The screen shot on page 5 is no longer accurate due to the software change,
though the UnStuffit screen closely resembles the screen printed. The
procedure is the same as outlined in step 4, though the location of the Extract
button was changed.

We hope you enjoy this innovative method for accessing Macintosh Technical
Notes.

Macintosh Tech Notes Stack Release Note June 1, 1989

#. Macintosh Technical Notes Stack
User’s Guide Version 3.0

& APPLE COMPUTER, INC.

Copyright © 1989 by Apple Computer, Inc.
Portions copyright © 1988-1989 by Raymond Lau

All rights reserved.

Apple, the Apple logo, Applelink, HyperCard, ImageWriter, LaserWriter, and Macintosh are
registered trademarks of Apple Computer, Inc.

APDA and MultiFinder are trademarks of Apple Computer, Inc.

&. Macintosh Technical Notes Stack
User’s Guide Version 3.0

tack Ver 2.0

HyperCard V-s-rsi.on 11.2.2 DE‘VE‘IOPEI‘

Systern Yersion: 6.0.3

onitors Setting: Bbit, Calor Technical Support

The Developer Technical Support Technical Notes Stack consists of a HyperCard® stack and an
accompanying folder which contains the Technical Note illustrations in PICT file format. The stack
and folder are shipped as a single file (Technical Notes Stack 3.0.sit) in a compressed format.
[Thanks to Raymond Lau, author of Stufflt, for allowing us to use this shareware compression utility.]

This, the first release of the Technical Notes Stack, includes all Technical Notes written through
December 1988 (Notes 0 — 221) as well as the complete index. This stack is meant as a supplement to
the published Technical Notes, and it will hopefully help you get even more out of the information we
publish in the Notes.

With this stack and HyperCard, you can now search the entire set of Technical Notes electronically as
well as copy the code samples directly into your programming environment. This User's Guide is
meant to help you get started with the stack and to serve as a reference for those features of the
stack which may not be completely self-explanatory.

Thanks for using the Technical Notes Stack, and thanks especially for writing the great software
which makes the Macintosh the success that it is.

Macintosh Technical Notes Stack

Requirements for Use
To use the Technical Notes stack, you need the following:

* A Macintosh Plus or later model with a minimum of one megabyte of memory.

A hard disk with a minimum of 2.5 megabytes of free space. (You only need

approximately 1.5 megabytes of free space to use the stack, but installation

requires the additional space.)

HyperCard 1.2 or later and a Home stack. We recommend using the latest version of

HyperCard, which is currently 1.2.2.

* A LaserWriter® or ImageWriter® printer if you wish to print the Notes or the
illustrations.

Installing the Technical Notes Stack

1) You need a copy of the shareware compression utility Stuffit 1.5.1 to decompress
and install the stack and accompanying illustrations. You can obtain this utility on
AppleLink in the Developer Services BBS (# Developer Services:Developer
Technical Support:Macintosh:Compression Utilities) as well as on other electronic
services and BBS systems, Figure 1 provides the information necessary to obtain a
copy of Stuffit 1.5.1 if you do not have access to any electronic services or user
group libraries.

A shareware file archival utility by. ..
...Raymond Lau

iy eJb L VERSION 15.1
Copyright © 1987, 1963, Raymond Lau. All Rights Reserved.

Usage: You may try Stufflt out for LS days. Afterwards, if you find it useful, please
register your copy by sending US$20 to the author. If you would like the latest
version sent w you, include an extra $2 ora disk & SASE. Pleasze tell me what
version you already have 30 I won'tsend you a dvplicate! For decompression
only, the freewsare UnStffIt utlity is aveilable. Thank you for your support.

Raymond Lan MacNET. RayLan Usenet: raylau@desysl UUCP
100-04 70 Ave. GEaie: RayLau o .
ForestHills, N.Y. 11375-5133 CIS:76174,2617 Commercial distrib. restricted.
United States of America Delphi: RaymondLau

Thanks to David Schenfeld, Richard Outerbridge, William R. Whitford, A.Weber, J.W McGuire,

THE MACINTOSH ARCHIVE UTILITY

Figure 1-Stuffit Utility Information

2) Copy the file “Technical Notes Stack.sit” from the distribution floppy disk to your
hard disk, and put the floppy disk away to use as a backup. If you have a copy of
Stufflt on your disk, the file should appear with the icon shown in Figure 2.

4 , Developer Technical Support

Version 3.0

o)

Technical Notes Stack 3 .C.sit

Figure 2-Compressed File Icon

3) Double-click on the file “Technical Notes Stack 3.0.sit” on your hard disk, and if you
have a copy of Stuffit on your disk, you should get the dialog box in Figure 3. 1If
your Desktop file has not been updated, you may need to open this file from within

the Stufflt application.

=0 Technical Notes Stack 3.0.sit

T

pe Crea

Size ESaved
1966203 S0 4

<]

1 items, 768k archive,

1529k decompressed.

DElCE (2.0

Add Multiple | | Extract

]

Delete

Rename

[2)

Info

£

Comen...

Real ity:36224k free,

Figure 3-Archive Dialog Box

4) Choose “Technical Notes Stack f:" by clicking on it, then click on the Extract
button to place this folder where you would like it on the hard disk. You will be
prompted with the dialog box in Figure 4. When you have chosen the location of the

folder, click on the Save button to begin installation.

Introduction, Installation, and Usage Notes

Macintosh Technical Notes Stack

— Paradox
O Activity Reports — Paradox
{2 Apple 11 —
i it fdeas [f e}]
[Documentation ([Drive |
(D2 Emails
[General [Save]

[Macintosh
1527k in item.

EXTRACT a folder... (skip ®.)
Technical Notes Stack f (cancel "#.]

[Free Space on Next Uolume]

O] [§ave a1 i)

14351K free on IHlusions

Figure 4-Extract Standard File Dialog

5) 1f there are no problems with the installation, your Macintosh will beep indicating
that the process is complete. You can now quit Stufflt, and you should have a folder
named “Technical Notes Stack f” (unless you renamed it) on your hard disk.

6) The last step of installation is deleting the “Technical Notes Stack 3.0.sit” file from
your hard disk. You may want to work with the stack first, however, to make sure
there are no problems which would require you to reinstall it. If you need to reinstall
the stack or the illustrations for any reason, first drag the entire “Technical Notes
Stack f” folder to the trash before rerunning these installation instructions.

Important Notes on Using the Technical Notes Stack

You can put the Technical Notes stack and the TN.PICT folder anywhere on your hard disk, but they
must remain at the same directory level (i.e., both in the same folder or both in the root directory of
the hard disk). Installation puts both the stack and the TN.PICT folder in another folder, “Technical
Notes Stack f.” In addition, you must not rename the TN.PICT folder or any of the PICT format files
it contains. The Technical Notes stack currently uses the exact names to locate the illustrations, so if
you rename 2 file, the stack will not be able to find it.

The Technical Notes stack is designed to be easy to use. The interface is as simple as possible, and if
you do not know what a particular item does, you can usually click on it to see what happens; you will
not damage the stack (at least we hope you won't).

6 Developer Technical Support

Version 3.0

Each Technical Note has its text locked, so you cannot accidently delete some important piece of
information. You can, however, copy or modify the text if you wish. Refer to the section on
Technical Note Cards for more information on how to use the Lock/Unlock button to accomplish
this.

If you cannot find a topic or subject in one of the three directories, you can always use the
HyperCard Find command from almost anywhere in the stack. Simply type Command-F, enter your
search word or phrase between the quotation marks, then press Return.

The stack consists of the following five different types of cards:

* Opening Card

¢ Listing by Number

« Listing by Subject

« Complete Index

* Technical Note Cards

The rest of this User's Guide details the different types of cards and the options which you have
available to you from each card type. In addition, we have included information about customizing
the stack and using the *xcMp* and *XFCN* resources in your own stacks.

Introduction, Installation, and Usage Notes 7

Macintosh Technical Notes Stack

Opening Card

When you open the Technical Notes stack, it will cycle through three cards before stopping at the
Opening Card, which is shown in Figure 5. (Note: If you do not like the small delay of cycling
through the first three cards, you can remove them without affecting the stack or its functionality,
or, if you install a Technical Notes Stack button on your Home Card, you can link directly to the
Opening Card .) .

Stack Version: 3.0

: MyperCard Yersion: 1.2.2 : DBVEIOpel‘

Systern Version: 6.0.3
{ Monitors Setti

Technical Suppor

»-

RO

Figure 5-Opening Card

The Opening Card contains a Version Information Box which is updated each time you open the
stack after restarting HyperCard. This Version Information Box provides the following information:
stack version, HyperCard version, System Software version, and minimal video monitors scttings.
This feature is provided with an *xFnC* resource, which is available for licensing for use in your own
stacks. Refer to the section on Licensing Information for more details on this and other resources
included in this stack.

If you report bugs in this stack to Macintosh Developer Technical Support, please include the
information which is provided in the Version Information Box along with a description of the bug.

8 Developer Technical Support

Version 3.0

Stack Version

The stack version displays the current version of the Technical Notes stack. This version number will
be updated automatically in future releases and updates. The current release, version 3.0, is the first
official release of this stack from Developer Technical Support, and it contains all Macintosh
Technical Notes released as of December 1988, This release covers Notes 0-221 and includes an index.

HyperCard Version

The HyperCard version displays the version of HyperCard in use on your Macintosh. This stack
requires HyperCard version 1.2 or later, and Developer Technical Support recommends that you
always use the latest released version (cusrently 1.2.2) with this stack.

System Software Version

The System Software version displays the System Software version running on your Macintosh, This
stack has been tested with System Software 6.0.2 and 6.0.3, and Developer Technical Support
recommends you use one of these versions (or later) with this stack, This stack may work with

eaflier versions of the System Software, but we really would like you to use the current version.

Monitors Setting

The monitors setting displays the settings for your primary video device. Current versions of
HyperCard can only display the special visual effects used in this stack when this device is set to a bit
depth of one (two colors or blank and white). If you are using a Macintosh II or IIx, you can control
both the bit depth and the choice of color or blank and white (and grays) with the Monitors control
panel device (cdev). Other Macintosh models are already set to a bit depth of one and black and
white if using their built-in monitor. You can still use the stack with a bit depth greater than one, but
you will not see the special visua! effects.

Clicking almost anywhere on this card (or pressing Right Arrow, if it is available) will take you to the
next type of card, Listing by Number, which lists all the Technical Notes which are available in this
stack in numerically ascending order.

You can return to the Opening Card at any time by entering the following in the message box
(Command-M): go card "TitleCard".

Opening Card 9

Macintosh Technical Notes Stack

Navigation Buttons

Navigation buttons are located on the bottom of all card types except the Opening Card, and you
can use these to navigate your way through the stack. Figure 6 illustrates these navigation buttons
with the Listing by Number selection selected.

izting by MNurber Listing by Subject r Complete Index :.. Back [E

Figure 6-Navigation Buttons

When you want to move to another type of Technical Note directory, switch between a Technical
Note card and a directory, or close the Technical Notes stack and go to your HyperCard Home Card,
you should use the following navigation buttons:

+ Home
The Home button is located in the lower left corner of all card types except the
Opening Card, and clicking on this button from anywhere in the stack will take you
to your HyperCard Home Card.

+ Listing by Number
The Listing by Number button is located to the right of the Home button at the
bottom of all card types except the Opening Card, and clicking on this button from
anywhere in the stack will take you to the Listing by Number card. When you are
viewing the Listing by Number card, this button will be highlighted, and clicking on
it will have no effect.

» Listing by Subject
The Listing by Subject button is located in the middle at the bottom of all card
types except the Opening Card, and clicking on this button from anywhere in the
stack will take you to the Listing by Subject card. When you are viewing the Listing
by Subject card, this bution will be highlighted, and clicking on it will have no
effect.

+ Complete Index
The Complete Index button is located to the right of the Listing by Subject button
at the bottom of all card types except the Opening Card, and clicking on this button
from anywhere in the stack will take you to the Complete Index card. When you are
viewing the Complete Index card, this button will be highlighted, and clicking on it
will have no effect.

10 Developer Technical Support

Version 3.0

+ Go Back
The Go Back button is located in the lower right corner of the Listing by Number,
Listing by Subject, and Complete Index cards. This button is only active when you
arrive at one of these three cards from a Technical Note Card. Clicking on this
button returns you to the last Technical Note card you saw, regardiess of how many
times you move between other card types.

This button changes to a Print button when you are looking at a Technical Note
card, and details on using the Print button are in the section on Technical Note
Cards.

Note: These navigation buttons appear on several different card types, but since their function
does not change, this is the only section which includes a definition of how they are used.
References to “navigation buttons” in other sections of this document refer these
definitions.

Navigation Buttons 1i

Macintosh Technical Notes Stack

Listing by Number

The Listing by Number card presents a directory of all available Technical Notes in a numerically
ordered, scrolling ist as shown in Figure 7. This directory is most useful when scarching for a particular
Technical Note when you know the number or the title.

Macintosh Technicatl Notes — Listing by Number

| 000 - About Macintosh Technical Notes
{| 001 - Desk Accessaries and System Resources
| D02 - Compatibility Guidelines
| 003 - Command-Shift-Number Keys
| 004 - Error Returns from GetNewDialog
| 005 - Using Modeless Dialogs from Desk Accessories
Ll 006 - Shortcut for Owned Resowrces
H 007 - A Few Quick Debugging Tips
008 - RecoverHandle Bug in AppleTalk Pascal Interfaces
fl 009 - Will Your AppleTalk Application Support Internets?
010 - Pinouts
011 - MemorwBased MacWrite File Format
012 - Disk-Based MacWrite Format
013 - MacWrite Cliphoard Format
014 - The INIT 31 Mechanism
015 - Finder 4.1
016 - MacWorks XL

Figure 7-listing by Number

You can use the scroll bars to move through the list when searching for a particular Note. Once you
find the Note for which you are searching, you can simply click anywhere on the that name in the list
and you will go directly to that Note. To return to this directory from any card in the stack, except
the Opening Card, click on the Listing by Subject navigation button. If you would prefer searching
for Technical Notes from another type of directory, use the Listing by Subject or Compilete Index
navigation buttons.

12 Developer Technical Support

Version 3.0

Listing by Subject

The Listing by Subject card presents a directory of all available Technical Note subjects (taken from
Technical Note #0) in an alphabetically ordered, scrolling list on the left side of the card as shown in
Figure 8. This list is the “Subject Selection Field,” and you use it to choose a particular subject area.

Technical Notes — Subject Listing

. Compatibility

[Appleshare 002 - Com,patibilitg Guidolines L
025 - Don’t Depend on Register AS Within Trap Patches
AppleTalk Manager 044 - HFS Compatibility
il Applications 083 - System Heap Size Warning
| 40P 100 - Compatibility with Large-Screen Displays
i CD ROM 103 - Using Max Appl2Zone and MoveHHi from Assembly
Compatibili 117 - Compatibility : Why and How
P L4 129 - _SysEnvirens: System 6.0 and Beyond
Control Manager 155 ~ Handles and Pointers~|dentity Crisis
Clontro] Panel 156 - Checking for Specific Functionality
. . 194 - WMgrPortability
Debugzging 203 - Don’t Abuse the Managers
208 - Setting and Restoring AS
:) 212 - The Joy of Being 32-Bit Clean
| Device Manager 213 - _Striphddress: The Untold Story

Dialog Manager
i: Disk Initialization Package
EntM pg

Listing by Number i g 3 Complete Index

Desk Accessories

Figure 8-Listing by Subject

You can use the scroll bars to move through the Subject Selection Field when searching for a particular
topic. Once you find the topic for which you are searching, you can simply click anywhere on the
name in the Subject Selection Field, and the stack will display a list of all Technical Notes which
address this topic in a numerically ordered, scrolling list on the right side of the card (Figure 8
illustrates the display if you were to choose “Compatibility” as your topic). This list is the “Technical
Note Selection Field,” and you use it just as you would the Listing by Number card. Simply click
anywhere on the title of the Technical Note which interests you, and you will go directly to that Note.

If you want to move sequentially (or randomly) through a complete subject area, you can use the
Listing by Subject navigation button from each Technical Note card, and it will return you to the
same choice in the Listing by Subject card so you do not have to repeat your topic search for each
Note which addresses that topic. If you would prefer searching for Technical Notes from another
type of directory, use the Listing by Number or Complete Index navigation buttons.

Listing by Subject 13

Macintosh Technical Notes Stack

Complete Index

The Complete Index card presents a directory of all available indexed Technical Note terms, phrases,
and topics (taken from the Technical Note Index) in an alphabetically ordered, scrolling list on the
left side of the card. This list is the “Index Word Selection Field,” and you use it just as you would the
Listing by Subject card. Simply click anywhere on the indexed entry in the Index Word Selection
Field, and the stack will display a list of all Techaical Notes which include 2 reference to this topic in a
numerically ordered, scrolling list on the right side of the card (Figure 9 illustrates the display if you
were to choose “Launch” as your topic). As with the Listing by Subject card, this list is the “Technical
Note Selection Field.”

Macintosh Technical Notes - Complete Index

oL Launch
LAP
large capacity media 052 - Calling Launch From a High-Level Language

large-screen displays 126 - Sublaunching : Playing the Shell Game
Laser Prep 180 - MultiFinder Miscellanea
LaserShare 205 - MultiFinder Revisited: The 6.0 System Release

Laser'Writer
LaserWriter driver
Launch

LaunchFlags

line breaks

line 1ay out

line width, fractional
Linel ay cutOff
LineLayoutOn

LINK

link-access protocol
List Manager
listDelProc
Lo3Bytes

low-level printi

A
il B
i c
D
I E
i F
| G
1l H

Listing by Subject |/} INNNCHSTIPN PR) o Back |

Figure 9-Complete Index

You can use the scroll bars to move through the Index Word Selection Field, but since there are
currently over 1,500 entries, this might take some time. To help you move quickly through this large
list, the stack provides an “Index Field Scroll Controller” to the left of the Index Word Selection Field.
Simply clicking on a tab of the Index Field Scroll Controller will begin listing the chosen entries under
the alphabetic character on that tab (the “Misc” tab includes those entries which begin with numbers
or non-alphabetic characters (i.e., @ operator, 32-bit clean)).. In the example in Figure 9, the “L” tab
is chosen.

Once you find the indexed entry which interests you and have chosen it to display the Technical
Notes which include a reference to it, you can simply click anywhere on the title of the Technical
Note which interests you, and you will go directly to that Note.

14 Developer Technical Support

Version 3.0

If you want to move sequentially (or randomly) through every Note which includes a reference to a
particular index entry, you can use the Complete Index navigation button from each Technical Note
card, and it will return you to the same choice in the Index Word Selection Field so you do not have to
repeat your search for each Note which includes a reference to that indexed entry. If you would
prefer searching for Technical Notes from another type of directory, use the Listing by Number or
Listing by Subject navigation buttons.

Complete Index 15

Macintosh Technical Notes Stack

Technical Note Cards

You wilt probably spend most of your time with this stack on Technical Note Cards, since these cards
contain the actual Technical Notes in a scrolling field. Figure 10 displays a typical Technical Note
Card, and in this case it is Technical Note #0, which provides important information about Technical
Notes and this Technical Notes Stack.

i #000: About Macintosh Technical Kotes

é;Stlck Yersion 3.0 March 1, 1989

f| Technical Bote #0 (this card) accompanies each release of Technical Notes.

i This stack is the first official release of Technical Notes in Hyper<Card

jj| format, and it includes all HMacintosh Technical Notes (0-221) released as of
Hl December 1988.

; You can access the Notes by number, subject, and index, or you may want to use
| HyperCard’s built-in search function to find a topic if the index does not list
iﬁit. (To use the search function, type Command-F, enter your search word between
Il the quotation marks, then press Return.)

; You do not need to be familiar with HyperCard to use this stack; if at any time
: you are unclear about how something in the stack works, try clicking on the
;%ohject in question, and its functionality should become apparent.

ubj hich you wowld like to see treated in s Technical

Figure 10-Technical Note Card (Technical Note #0)

In addition to the standard navigation buttons, Technical Note Cards have arrow buttons located on
either side of the Technical Note title at the top of the card. Clicking on these arrow buttons is the
same as pressing Left Arrow or Right Arrow, it takes you to the Technical Note Card numerically
preceding (Left Arrow) or following (Right Arrow) the current card. These buttons scroll continually if
you hold down the mouse button when you click on them (this is different from most HyperCard
buttons which only move one card at a time for each time you click on them), and using this feature
you can scroll through several Technical Notes very quickly without needing to go back to one of the
directories to choose another Note.

However, since you can get to each of the three types of Technical Note directories from a
navigation button, the “Go Back” button does not appear on Technical Note Cards, and it is
replaced by the “Print” Control button, one of the three types of Control buttons which can appear
on Technical Note Cards. The Control buttons “Print," “Display Graphic Image,” and “Lock/Unlock”
and are documented later in this section, but for now you should know that they are unique to
Technical Note Cards, and they control different functions you may want to pedform on the
individual Technical Notes.

16 Developer Technical Support

Version 3.0

In most cases, each Note occupies only one card, but you should be aware that longer Notes are split
across several numerically ordered cards. Notes which require more than one card are labeled “Card 1
of n” at the top of the field where n is the total number of cards, and the Technical Note number at

the top of the card will include a letter (i.e., a, b, c...) to indicate the order of that card in the series.

i 1170~ Compatibility: Why & How
Bl 117c - Compativility: Why & How
Il 118 - How 1 Check ard Hardle Printing Errors

Car

Figure 11-Technical Notes Which Require Multiple Cards

Figure 11 illustrates an example of a Note which is split across several cards, both on the Listing by
Number card and on the third and final card of the third set of cards (e.g., Card 3 of 3 on Technical
Note #117¢).

Control Buttons

Technical Note Cards use three types of Control buttons: Print, Display Graphic Image, and
Lock/Unlock. Every Technical Note Card has a Print and Lock/Unlock button, but only those which
use accompanying illustrations use the Display Graphic Image button.

e Print
The Print button located in the lower right comer of the Technical Note Cards prints the text
of the current Technical Note Card. When you click on the Print button, you will see the Print
Status dialog box shown in Figure 12. When this dialog disappears, you can continue working
in the stack. If you wish to cancel printing, press Command-period until the dialog
disappears.

Now Printing...
Type command-period to stop

Figure 12-Text Print Status Dialog Box

Technical Notes Cards 17

Macintosh Technical Notes Stack

[|#189: Yersion Territory
See also: The Finder Interface
il written by: Darin Adler April 2, 1988

flltioditied by: andrew Shebanow August 1, 1988
H|Modified by: Andrew Shebanow October 1, 1988

Thiz Technical Note descridbes the 'vers' regouwrce supported by Finder 6.1 and
Hilater versions,

HMlincludes that file. These version numbers are stored in 'vers' resources

The Print button on the Technical Note Cards will not print the associated illustrations; you
must print the illustrations from the window in which they are displayed, which you can
access with the Display Graphic Image button shown in Figure 13 and documented in the
next section. If a Technical Note Card does not have this button, there are no illustrations
which accompany the Note.

Display Graphic Image

The Display Graphic Image button, if it exists for a particular Note (e.g., if the Note has
illustrations which accompany it), is located in the lower right corner of the text field where
the Note is displayed. If there is more than one illustration, there will be multiple buttons
from which to choose. The icon for the Display Graphic Image button is shown in Figure 13,
and its location on a Technical Note Card follows in Figure 14.

189 Version Tarrikory

Technical Fote #48: Eundles

Changes since August 1, 1988: Updated Version to VersRec in the type
definition.

Finder 6.1 introduces a feature which asllows the creator of a file to ideptd
the version of that file as well as the version of a set of files which

he version number and a longer version messa
Listing by Subject

Figure 14-Display Graphic Image Button Location

each contains a BCD form of t

Listing by Number

Complete Index

To display an illustration, click on the Display Graphic Image button. The stack will open a
full-screen sized window to display the illustration as shown in Figure 15. You can manipulate
this window by scrolling, resizing, zooming, and moving to a different location on the
screen. (Note: Under MultiFinder, currently you can switch to another layer while displaying
a graphic image, but you cannot access the HyperCard layer.)

18

Developer Technical Support

Version 3.0

from vers 2
ressuroce

= System Software Yersin6C o 1
Kind : Sysiem docunent
Bize: 106,953 bytes used, 105K on disk

Whers: Beet Ween, SCSH0

Created: Tue, Mar B, 1988, 1200 PM

Medified: Fri, Mar 25,1988, 4 31 PM

Version: 6.1, ©Apple Computer, Inc. | from vers 1
1963-88 reseurce

Seqqested Memory Size (X): 320

Application Memery Size (K):

Swck Version 3.0
March 1, 1989

[_Print K[[

Figure 15-Full-Screen Sized Graphic Image Window

You can scale 2 illustration to fit on entirely your screen if it is too large to be displayed when
it first opens. Pressing Command-F toggles between the “Reduce-to-Fit” and full-screen
windows. An example of reducing a window to fit is shown in Figure 16.

Technical Notes Cards 19

Macintosh Technical Notes Stack

OJ=———=— PICT - 189 - 58% =————|

[l Lesied]
-

C fystum efuro daskn kR o L v Z2
Bz By sturn Epammnk FhiMres

S 1046 T bngow el | 03 o i

Whars: Rasl Wesn, SEXI 8

Crwaled: Tuw, Mo B, 1 398, 13 20

Muitiisd: fri, He 23, 1990, 4371 M1

Varwi: 61, OApfle Cavpuber, bo ram v ¢
-0 A v

dmpuriné Hewory bem [K: 320

Sertinstine Hraery B (K]

Btark Verioa 4.0
areh 1, 10

Figure 16-Reduce-to-Fit Graphic Image Window

The Print button located in the lower left comer of the full-screen sized Graphic Image
Window (see Figure 15 for location) prints the illustration in the current window. When you
click the Print button, you will see the Print Status dialog box shown in Figure 17. When this
dialog disappears, you can continue working in the stack. If you wish to cancel printing,
press Command-period until the dialog disappears.

Now printing: "PICT - 189"
Te cancel, press command-period.
Pages to print: 1

Figure 17-Graphic Image Print Status Dialog Box

When you are finished viewing or printing the illustration, you can close the window by either
clicking in the close box or pressing Command-W.

20 : Developer Technical Support

Version 3.0

» Lock/Unlock
The Lock/Unlock button prevents you from accidently deleting or altering the text of the
Technical Notes, but it allows you to copy the text for your own use. This button first
appears as a closed padlock in the upper right corner of the text field where the Note is
displayed as shown in Figure 18.

Bl Stack Version 3.0 March 1, 1989

Hl Technical Note #0 (this card) accompanies each release of Technical Fotes.
This stack is the first officisl release of Technical Notes in Hyper<ard
format , and it includes all Macintosh Technical Notes (0-221) released ags of

il December 1988,

fl You can access the Notes by number, svbject, and index, or you may want to use
il HyperCard’s built-in search function to find a topic if the index does not list
lit. (To use the search function, type Command-F, enter your search word between
il the quotation marks, then press Return.)

HlYou do not need to be familiar with HyperCard to use this stack; if at any time
you are unclear about how something in the stack works, try clicking on the
_:object in question, and its functionality should become apparent.

H1f there are any sub' hi uld like t treated in a Technical
: LIShng bg Number L}shng bg Suh)ect Complete Index

Figure 18-Lock/Unlock Button in Locked Mode

If your HyperCard User Level is higher than Browsing (1), then clicking on the Lock/Unlock
button will change it to an open padlock and unlock the Technical Note text field so you can
select text with which to work as shown in Figure 19.

Technical Notes Cards 2t

Macintosh Technical Notes Stack

by number, subject, and dindex, or you may mant to use
o ch function to find & topic if the index does not list
: . {To use the search function, type Command-F, enter youw search word between
i} the gquotation marks, then press Retwn.)

fil You do not need to be familiar with HyperCard to use this-stack; if at any time
llyou are unclear about how something im the stack works, try clicking on the
f object in question, and its functiorality shouvld become apparent.

111t there are any subjects which you would like to see trested in a Technical

Listing by Subject Complete Index

Figure 19-Lock/Unlock Button in Unlocked Mode

If your HyperCard User Leve! is either Authoring (4) or Scripting (5), any changes you make to
the stack, including the text of the Technical Note Cards, will remain when you close that
card (although the card will revert to the locked mode). If your User Level is anything less
than Authoring or Scripting, all changes you make will be lost, as the card will revert to its
original text and the locked mode when you close it.

22 Beveloper Technical Support

Version 3.0

Customizing the Technical Notes Stack

You will probably spend most of your time with this stack on the Technical Note Cards, but like most
of Developer Technical Support, you will probably want to make some changes to the stack or at
least poke around in the scripts to see exactly how it all works. This is fine with us, but we offer some
advice on using caution as well as a few techniques to keep you out of trouble.

Warning: Do not distribute modified versions of this stack without clearly
documenting the changes in the scripts and identifying the stack on the
Opening Card as a customized version. If you implement features which
you would like to see included in the released version of this stack, please
send them to Macintosh Developer Technical Support at one of the
addresses listed in Technical Note #0.

The Technical Notes Stack Updater may make sweeping changes to the stacks it updates. These
changes may include not only the Notes in the stack, but also the scripts which run the stack. These
updates will not be able to account for any modifications you make, so although the update
should still work, your changes will probably be lost.

Techniques to Avoid Trouble

o Always work on a copy of the stack.

e Always keep an original copy of the stack in a safe place as a backup (The
compressed file on the distribution disk is good for this purpose if you don’t mind
rerunning the installation process).

« Make your changes in modules, so you can restore them after an update (i.e., instead
of changing the existing handlers in 2 number of places, write your own handlers and
call them from within the existing code).

« Always thoroughly document your changes with clear comments, so you can
differentiate between your modifications and our released versions.

o Always back up your stack before updating, then carefully check the new release and
work your modifications into the new stack from your backup copy. Do not delete
your backup copy until you are sure all the features of the stack work.

« When in trouble, start over with the original copy of the stack.

Customizing the Technical Notes $tack 3

Macintosh Technical Notes Stack

Licensing Information

The Technical Notes Stack uses two *xcMp* and two *XFCN' resources developed and maintained
at Apple Computer, Inc. for various functions. The resources are as follows:

'XCMD' Resources
* TNPict
* PrintOut
'XFCN' Resources
¢« SysEnv
* Dialog

and are copyrighted by Apple Computer, Inc. You may, however, licence all of these resources for use
in your own products. For more information about licensing, contact:

Software Licensing

Apple Computer, Inc.

20525 Mariani Avenue, M/S 38-1
Cupertino, CA 95014

(408) 974-4667

Applelink: SW.LICENSE

24 Developer Technical Support

Version 3.0

Update Information

Developer Technical Support will be updating the Technical Notes Stack quarterly and sending the
updates in the regular developer mailings. We have designed an Updater stack which will contain new
and revised Technical Notes as well as new or revised scripts to control the Technical Notes Stack.

Updates will be ordered sequentially, so you will need each update; if you do not install one update,
the next one may not work.

We want this stack distributed as widely as possible, so updates will also be available on AppleLink in
the Developer Services bulletin board (in a compressed format) and other electronic sources. You
can also order the Technical Notes Stack and updates from APDA. Refer to Technical Note #0 for
more information on APDA,

Update Information 5]

APPLE SOFTWARE LICENSE

PLEASE READ THIS DOCUMENT CAREFULLY BEFORE USING THE
SOFTWARE. BY USING THE SOFTWARE, YOU ARE AGREEING TO
BE BOUND BY THE TERMS OF THIS LICENSE. IF YOU DO NOT
AGREE TO THE TERMS OF THIS LICENSE, PROMPTLY RETURN THE
UNUSED SOFTWARE TO THE PLACE WHERE YOU OBTAINED IT AND
YOUR MONEY WILL BE REFUNDED.

1. License, The application, demonstration and system software (the
*Software”) and related documentation are licensed to you by Apple. You
own the disk on which the Software is recorded but Apple retains title to the
Software, This License allows you 1o use the Software on a single Apple
computer and make one copy of the Software in machine-readable form for
backup purposes only. You must reproduce on such copy the Apple
copyright notice and any other proprietary legends that were on the original
copy of the Software. You may also transfer the Software, the backup copy
of the Software, the related documentation and a copy of this License to
another party provided the other party reads and agrees to accept the terms
and conditions of this License,

2. Restrictions, The Software contains copyrighted material, trade secrets,
and other proprietary information and in order to protect them you may not
decompile, reverse engineer, disassemble or otherwise reduce the Software
to a human-perceivable form. You may not modify, network, rent, lease,
loan, sell, distribute or create derivative works based upon the Software in
whole or in part. You may not electronically transfer the Software from one
computer to another over a network.

3. Termination. This License is effective until terminated. You may
terminate this License at any time by destroying the Software and all copies
thereof. This License will terminate immediately without notice from Apple
if you fail to comply with any provision of this License. Upon termination you
must destroy the Software and all copies thereof,

4. Export Law Assurances. You agree and certify that neither the
Software nor any other technical data received from Apple, nor the direct
product thereof, will be exported outside the United States except as
authorized in advance by Apple, in writing, and as permitted by the laws
and regulations of the United States.

5. Government End Users.

{a) If this Software is acquired by or on behalf of a unit or agency of the
United States Government this provision applies. This Software: (i) was
developed at private expense, and no part of it was developed with
government funds; (i) is a trade secret of Apple for all purposes of the
Freedom of Information Act; (iti} is "commercial computer software® subject
to limited utilization as provided in the contract between the vendor and the
gevernmental entity; and (iv) in all respects is proprietary data belonging
solely to Apple.

(b) For units of the Department of Defense (DOD), this Software is sold only
with "Restricted Rights” as that term is defined in the DOD Supplement to the
Federal Acquisition Regulations (*DFARS*) 52.227-7013 (c) (D) (i) and use,
duplication or disclosure is subject to restrictions as set forth in subparagraph
{¢) (1) (ii) of the Rights in Technical Data and Computer Software clause at
DFARS 52.227-7013, Manufacturer: Apple Computer, Inc., 20525 Mariani
Avenue, Cupertino, California 95014,

{c} If this Software was acquired under a GSA Schedule, the Government has
agreed: (i) to refrain from changing or removing any insignia or lettering
from the Sofrware that is provided or from producing copies of manuals or
disks (except one copy for backup purposes); (i) title to and ownership of this
Software and any reproductions thereof shall remain with Apple; (iii} use of
this Software shall be limitex! to the facility for which it is acquired; and (iv) if
use of the Software is discontinued at the installation specified in the
purchase/delivery order and the Goverment desires to use it at another
location, it may do so by giving prior written notice to Apple, specifying the
type of computer and new location site.

{d) Govemment personnel using this Apple Software, other than under a

DOD contract or GSA Schedule, are hereby on notice that use of this
Software is subject to restrictions which are the same as, or similar to, those
specified above.

6. Limited Warranty on Media. Apple warrants the disks on which the
Software is recorded to be free from defects in materials and workmanship
under normal use for a period of ninety (90) days from the date of purchase
as evidenced by a copy of the receipt. Apple's entire liability and your
exclusive remedy will be replacement of the disk not meeting Apple's
limited warranty and which is returned to Apple or an Apple authorized
representative with 4 copy of the receipt. Apple will have no responsibility
to replace a disk damaged by accident, abuse or misapplication. ANY
IMPLIED WARRANTIES ON THE DISKS, INCLUDING THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO NINETY (%0}
DAYS FROM THE DATE OF DELIVERY. THIS WARRANTY GIVES YOU
SPECIFIC LEGAL RIGHTS, AND YOU MAY ALSO HAVE OTHER RIGHTS
WHICH VARY FROM STATE TO STATE.

7. Disclaimer of Warranty on Software. You expressly acknowledge
and agree that use of the Software is at your sole risk. The Software and
related documentation are provided "AS 18" and without warranty of any
kind and Apple EXPRESSLY DISCLAIMS ALL WARRANTIES, EXPRESS CR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
APPLE DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE
SOFTWARE WILL, MEET YOUR REQUIREMENTS, OR THAT THE
OPERATION OF THE SOFTWARE WILL BE UNINTERRUPTED OR ERROR-
FREE, OR THAT DEFECTS IN THE SOFTWARE WILL BE CORRECTED.
FURTHERMORE, APPLE DOES NOT WARRANT OR MAKE ANY
REPRESENTATIONS REGARDING THE USE OR THE RESULTS OF THE USE
OF THE SOFTWARE OR RELATED DOCUMENTATION IN TERMS OF THEIR
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE. NO ORAL
OR WRITTEN INFORMATION OR ADVICE GIVEN BY APPLE OR AN APPLE
AUTHORIZED REPRESENTATIVE SHALL CREATE A WARRANTY OR IN
ANY WAY INCREASE THE SCOPE OF THIS WARRANTY. SHOULD THE
SOFTWARE PROVE DEFECTIVE, YOU (AND NOT APPLE OR AN APPLE
AUTHORIZED REPRESENTATIVE) ASSUME THE ENTIRE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION. SOME STATES DO
NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE
EXCLUSION MAY NOT APPLY TO YOU.

8. Limitation of Liability, UNDER NO CIRCUMSTANCES INCLUDING
NEGLIGENCE, SHALL APPLE BE LIABLE FOR ANY INCIDENTAL, SPECIAL
OR CONSEQUENTIAL DAMAGES THAT RESULT FROM THE USE OR
INABILITY TO USE THE SOFTWARE OR RELATED DOCUMENTATION,
EVEN [F APPLE OR AN APPLE AUTHORIZED REPRESENTATIVE HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME STATES DO
NOT ALLOW THE LIMITATION OR EXCLUSION OF LIABILITY FOR
INCIDENTAL OR CONSEQUENTIAL DAMAGES SO THE ABOVE LIMITATION
OR EXCLUSION MAY NOT APPLY TO YOU.

In no event shall Apple's total liability to you for all damages, losses, #nd
causes of action (whether in contract, tort (including negligence) or otherwise)
exceed the amount paid by you for the Software.

9, Controlling Law and Severability. This License shail be govemed by
and construed in accordance with the laws of the State of California, except
that body of California law concerning conflicts of law, If for any reason a
court of competent jurisdiction finds any provision of this License, or portion
therecf, to be unenforceable, that provision of the License shall be enforced
to the maximum extent permissible 5o as to effect the intent of the parties,
and the remainder of this License shall continue in full force and effect.

10. Complete Agreement. This License constitutes the entire
agreement between the parties with respect to the use of the Software
and related documentation, and supersedes all prior or
contemporaneous understandings or agreements, written or oral,
regarding such subject matter.
2/20/8%

Macintosh s
Technical Notes .

Developer Technical Support

#129: _SysEnvirons: System 6.0 and Beyond

Revised by: Guillermo Ortiz & Dave Radcliffe October 1989
Written by: Jim Friedlander May 1987

This Technical Note discusses changes and enhancements in the SysEnvirons call in System
Software 6.0 and later,

Changes since April 1989: Added machineType constants for the Macintosh Portable and
Ilci. Also added keyBoardType constants for the Portable and ISO keyboards.

_SysEnvirons and New Machines

_SysEnvirons is the standard way to determine the features available on a given machine, and
its main characteristic is that it continually evolves to provide the necessary information as new
machines and System Software appear. As originally conceived, SysEnvirons would check
the versionRequested parameter to determine what level of information you were prepared to
handle, but this technique means updating _SysEnvirons for every new hardware product
Apple produces. With System Software 6.0, SysEnvirons introduced version 2 of
environsVersion to provide information about new hardware as we introduce it; this new
version returns the same SysEnvRec as version 1.

Beginning with System Software 6.0.1, Apple only releases a new version of _SysEnvirons
when engineering make changes to its structure (i.e., when they add new fields to SysEnvRec);
all existing versions will return accurate information about the machine environment even if part of
that information was not originally defined for the version you request. For example, if you call
_SysEnvirons with versionRequested = 1 on a Macintosh IIx, it will return a
machineType of envMacIIx even though this machine type originally was not defined for
version 1 of the call.

*

You should use version 2 of _SysEnvirons until Apple releases a newer version. Regardless of
the version used, however, your software should be prepared to handle unexpected values and
should not make assumptions about functionality based on current expectations. For example, if
your software currently requires a Macintosh LI, testing for machineType >= envMacII may
result in your software trying to run on a machine which will not support the features it requires, so
test for specific functionality (i.e., hasFPU, hasColorQD, etc.).

You should always check the environsVersion when returning from _SysEnvirons since
the glue always retamns as much information as possible, with environsVersion indicating the
highest version available, even if the call returns an envSelTooBig (-5502) error.

#129: _SysEnvirons: System 6.0 and Beyond 1 of2

New Constants

The following are new _SysEnvirons constants which are not documented in /nside Macinzosh;
however, you should refer to Inside Macintosh, Volume V-1, Compatibility Guidelines, for the
rest of the story.

machineType

envMacIIx = 5 {Macintosh IIx}

envMacIIcx = 6 {Macintosh IIcx}

envSE30 = 7 {Macintosh SE/30}

envPortable = 8 {Macintosh Portable}

envMacIIci = 9 {Macintosh IIci}

processor

env68030 = 4 {MC68030 processor}
keyBoardType

envPortADBKbd = 6 {Portable Keybocard}

envPort ISOADBKbd = 7 {Portable Keyboard (ISO)}
envStdISOADBKbd = 8 {Apple Standard Keyboard (ISOQ)}
envExt ISOADBEbd = 9 {Apple Extended Keyboard (ISO)}

Further Reference:

* Inside Macintosh, Volume V-1, Compatibility Guidelines

#129: _SysEnvirons: System 6.0 and Beyond 20f2

Macintosh £
Technical Notes .

Developer Technical Support

#161: When to Call _PrOpen and _PrClose

Revised by: Pete “Luke” Alexander October 1989
Written by: Ginger Jemigan September 1987

This Technical Note discusses opening and closing the Printing Manager with calls to _PrOpen
and _PrClose.

Changes since August 1989: Added code for pIdle procedure support and improved the
error handling in the page loop.

Introduction

At one time, Apple recommended that developers call _PrOpen at the beginning of their
application and PrClose at the end, before returning to the Finder. This recommendation was
in the ancient past when an application only had to deal with a single printer driver.

As more printer drivers became available, it became important for an application to consider the
presence of other applications and how opening and closing the printer driver affected them. The
user could open the Chooser at any time and change the current printer driver without the current
application’s knowledge. If an application followed the old philosophy and a user changed the
current printer driver while running the application, the next time the user attempted to print, the
wrong driver would be open, the Printing Manager would not be able to find the necessary
resources, and the user would get an error.

The Current Recommendation

Macintosh Developer Technical Support currently recommends that applications open and close the
printer driver each time the application uses the Printing Manager.

MPW Pascal

Fommme Pr At S UL o mm e o e e *)

** PrintStuff will call all of the necessary Print Manager calls to print
** a document. It checks PrError{) after each Print Manager call. If an
** error is found, all of the Print Manager open calls (i.e., PrCpen,

** PrOpenDoc...) will have a correspending close call before the error

** is posted to the user. You want to use this approach to make sure the

** Print Manager closes properly and all temporary memory is released,
!!}

PROCEDURE PrintStuff;

#161: When to Call - PrOpen and _PrClose 1of8

VAR
copies,
firstPage,
lastPage,
locp,
numberQfCopies,
pageNumber,
printmgrsResFile,
realNumberOfPagesInDoc ¢ Integer;
PrintError : LongInt;
cldPort : GrafPtr:;
thePrRecldl : THPrint;
thePrPort : TPPrPort:
theStatus : TPrStatus;

BEGIN
GetPort (oldPort) ;

{**
UniLoadTheWorld will swap out ALL unneeded code segments and data that are NOT required
during print time, Your print code must be a separate code segment.
t*}
UnLoadTheWorld;
thePrRecHdl := THPrint (NewHandle (SIZEOF(TPrint)}):

I¥ {(MemError = noErr} AND (thePrRecHdl <> NIL) THEN

BEGIN
PrOpen;
IF (PrError = noErr) THEN
BEGIN
{**
Save the current resocurce file (i.e. the printer driver's)
so the driver will not lose its resources upon return from the pldleProc,
**}

printmgrsResFile := CurResFile;
PrintDefault (thePrRecHdl);

IF (PrError = noErr) THEN
BEGIN
IF (PrstlDialog{thePrRecHdl)) THEN
BEGIN
{*t

DetermineNumberOfPagesinDoc determines the number of pages contained
in the document by comparing the size of the document with rPage
from the TPrInfo record (IM II-150). It returns the number of pages
required to print the document for the currently selected printer.

**}

realNumberCfPagesinDoc := DetermineNumberOfPagesinDoc
{thePrRecHdl~".prInfo.rPage);

IF {PrJobDialogi{thePrRecHdl)) THEN
BEGIN
{**
Get the number of copies of the document that the user wants
printed from iCopies of the TPrJcb record (IM II-151}.

t*}

numberOfCopies := thePrRecHdl"".prJob.iCopies;

#161: When to Call _PrOpen and _PrClose 20of8

{**
Get the first and last pages of the document that were requested
to be printed by the user from iFstPage and ilastPage from the
TPrdck record (IM JI-151).

**}

firstPage := thePrRecHdl”",prJob.iFstPage;
lastPage := thePrRecHdl"".prJob.ilLstPage;

(*t

Print ™"all" pages in the print loop
**)

thePrRecHdl~"~.prJok.iFstPage := 1;
thePrRecHdl~~,prJob.iLstPage := $999;

(**
Determine the "real™ number of pages contained in the document .

Without this test, you would print 9999 pages.
**)

IF (realNumberOfPagesinDoc < lastPage) THEN
lastPage := realNumberQfPagesinDoc;

{**
Print the number of copies of the document requested by the user
from the Print Job Dialog.

it)

For copies (= 1 To numberOfCopies Do

BEGIN

{i*
Install and call your "Print Status Dialcg".

**}
PrintingStatusDialog := GetNewDialeg(257, NIL, POINTER(-1));
thePrRecHdl"~.prJob.pldleProc := @checkMyPrintDialogButton;
{**

Restore the resource file to the printer driver's.
**}
UseResFile(printmgrsResFile);

thePrPort := PrOpenDoc{thePrRecHdl, NIL, NIL);

IF {PrError = ncErr) THEN

BEGIN

[**
Print the range of pages of the document requested by the
user from the Print Job Dialog.

*i]

pageNumber := firstPage;

WHILE (({pageNumber <= lastPage) AND {(PrError = noErr)} DO

BEGIN

PrOpenPage (thePrPort, NIL};

IF (PrError = noErr) TEEN
BEGIN
{**
rPage (IM II-150} is the printable area for
the currently selected printer. By passing

#161; When to Call _PrOpen and _PrClose 3of8

the current enables your app to use the same
routine to draw to the screen and the

printer's GrafPort.
**}

DrawStuff (thePrRecHdl“*.prinfo.rPage,
GrafPtr (thePrFort},
pageNumber) ;
END;
PrClosePage (thePrPort);
pageNumber := pageNumber + 1;
ENEC; ({** End pagenumber loop +**)
END;
PrCloseDoc(thePrPort);
END; (** End copies loop **}

(!’*
The printing job is being canceled by the request of the
user from the Print Style Dialog or the Print Job Dialog
PrError will be set to iPrAbort to tell the Print Manager
to abort the current printing job.
**}
END
ELSE
PrSetError {iPrAbort); {** Cancel from the job dialog *x)
END
ELSE

PrSetError (iPrAbort); {** Cancel from the style dialog **}
END;
END;
IF {thePrRecHdl”".prJob.bJDocLoop = bSpoolloop) and (PrError = noErr) THEN
PrPicFile{thePrRecHdl, NIL, NIL, NIL, theStatus);

{**

Grab the printing error before ycu close the Print Manager and the error disappears.
**}

PrintError := PrError;

PrClose;

{**
You do not want to report any printing errors until yeou have fallen through the
printing loop. This will make sure that ALL of the Print Manager's open calls
have their correspending close calls, thereby enabling the Print Manager

to close properly and that all temporary memory allocations are released.
t*}

If (PrintError <> noErr) THEN
PostPrintingErrors (PrintError);

END;

IF {thePrRecHdl <> NIL) THEN
DisposHandle{Handle {(thePrRecHdl)};

IF {(PrintingStatusDialecg <> NIL} THEN
DisposDialog{PrintingStatusDialog);

SetPort (oldPort) ;

END; (** PrintStuff =%}

#161: When 1o Call _PrOpen and _PrClose 40of 8

** PrintStuff will call all of the necessary Print Manager calls to print

*x a document. It checks PrError{) after each Print Manager call. If an error
*k is found, all of the Print Marnager open calls {(i.e., PrCpen, PrOpenDoc...)
** will have a correspoending close call before the error is posted to the user.
*x You want to use this appreoach to make sure the Print Manager closes properly
** and all temporary memory is released,

*i/

void PrintStuff ()
{
GrafPtr oldPort;
short copies,
firstPage,
lastPage,
numberQfCopies,
printmgrsResFile,
realNumberOfPagesinDoc,
pageNumber,
PrintError;
THPrint thePrRecRdl;
TPPrPort thePrPort;
TPr5tatus theStatus;

GetPort (&oldPort) ;

/‘t*
UnLoadTheWerld will swap out ALL unneeded code segments and data that are

NOT required during print time. Your print code must be a separate code segment.

LAV

UnLoadTheWorld {);
thePrRecHdl = (THPrint) NewHandle (sizeof (TPrint)):

/**
Check to make sure that the memory manager did not produce an error when it allocated
the print record handle and make sure it did not pass back a nil handle.
‘k‘k/
if (MemError() == noErr &£& thePrRecHdl '= nil)
{
PrCpen{};
if (PrError() == noErr}
{
/i*
Save the current resource file (i.e. the printer driver's) so the
driver will not lose its resources upon return from the pIdleProc,
**/

printmgrsResFile = CurResFile();
PrintDefault {thePrRecHdl} ;

1f {(PrError{) == noErr)
{
if (PrstlDialog(thePrRecHdl}) .
{

/**

DetermineNumberOfPagesinDoc determines the number of pages contained in the

#161: When to Call _PrOpen and _PrClose

50f8

** PrintStuff will call all of the necessary Print Manager calls to print

** a document. It checks PrError{) after each Print Manager call. If an error
*x is found, all of the Print Manager open calls (i.e., PrOpen, PrOpenDoc...}
** will have a corresponding close call before the error is posted to the user.
** You want to use this approach to make sure the Print Manager closes properly
** and all temporary memory is released.

**/

vold PrintStuff ()
{
GrafPtr oldPort;
short coples,
firstPage,
lastPage,
numberQfCopies,
printmgrsResFile,
realNumberCfPagesinDoc,
pageNumber,
PrintError;
THPrint thePrRecHdl;
TPPrPort thePrPort.;
TPrStatus theStatus;

GetPort (éoldPort) ;

/**

nLoadTheWorld will swap out ALL unneeded code segments and data that are

NOT required during print time. Your print code must be a separate code segment.
**/

UnLoadTheWorld ():
thePrRecHdl = {THPrint) NewHandle {(sizeof (TPrint)):

/**
Check to make sure that the memory manager did not produce an error when it allocated
the print record handle and make sure it did not pass back a nil handle.
tt/
if (MemError() == noErr && thePrRecHdl != nil)
{
PrOpen(};
if (PrError{) == noErr)

{
/**
Save the current resource file (i.e. the printer driver's) so the
driver will not lose its resources upon return from the pldleProc.
**/
printmgrsResFile = CurResFile{();
PrintDefault (thePrRecHdl};

if (PrError() == noErr)
{
if (PrstlDialog(thePrRecHdl)}
{
/i*
DetermineNumberOfPagesinDoc determines the number of pages contained in the

#161: When to Call _PrOpen and _PrClose S5of8

document by comparing the size of the document with rPage from the TPrinfo
record (IM II-150). It returns the number of pages required to print the

document for the currently selected printer.
**/

realNumberOfPagesinDoc = DetermineNumberOfPagesinDoc
{{**thePrRecHdl} .prinfo.rPage);

~— if {PrJobDialecg(thePrRecHdl))
{
/‘k*
Get the number of copies of the document that the user
wants printed from iCopies of the TPrJob record (IM II-151).

i'ﬁ/

numberOfCopies = (**thePrRecHdl).prJob.iCopies;

/**
Get the first and last pages of the document that were requested to be
printed by the user from iFstPage and ilLastPage frem the TPrJob record
{IM II~151).

t’l/

firstPage = (**thePrReclidl) .prJob.iFstPage;
lastPage = (**thePrRecHdl).prJob.iLstPage;

/*‘k

Print ™all® pages in the print loop
**/
{**thePrRecHdl) .prJob.iFstPage = 1;

(**thePrRecHdl) .prJob.ilstPage 9999;

/t*
Determine the "real" number of pages contained in the document.
Without this test, you would print 9999 pages.

t*/

if {(realNumberOfPagesinDoc < lastPage)
lastPage = realNumberOfPagesinDoc;

/**
Print the number of copies of the document
requested by the user from the Print Job Dialog.
**/
for {(copies = 1; copies <= numberQfCopies; coples++)
{
/*t
Install and call your "Print Status Dialog",
*‘A’/

PrintingStatusDialog = GetNewDialog{257, nil, (WindowPtr) -1);
(**thePrRecHdl) .prJob.pIdleProcc = checkMyPrintDialogButton;

/**
Restore the resource file to the printer driver's.
*t/

UseResFile{printmgrsResFile);
thePrPort = PrOpenDoc(thePrRecHdl, nil, nil);

#161: When to Call _PrOpen and _PrClose 6 of 8

if (PrEfror() == noErr)

{

/**
Print the range of pages of the document
requested by the user from the Print Job Dialog.
l’*/
pageNumber = firstPage;
while (pageNumber <= lastPage && PrError() == noErr)
{
PrOpenPage (thePrPort, nil);

if (PrError{} == noErr}

{

/**
rPage (IM II-150) is the printable area for the
currently selected printer. By passing the current port
to the draw routine, enables your app to use the same
routine to draw to the screen and the printer's
GrafPort.

t*/

DrawStuff ((**thePrRecHdl).prInfo.rPage,

{GrafPtr} thePrPort, pageNumber):

PrClosePage (thePrPort) ;
pageNumber++;
} /** End pageNumber loop **/
}
PrCloseDoc (thePrPort);
)} /** End coples loop **/

/**
The printing job is being canceled by the request of the user from the
Print Style Dialog or the Print Job Dialog. PrError will be set to
PrAbort to tell the Print Manager to abort the current printing job,

!*/
else
PrSetError {iPrAbort); /** cancel from the job dialog #**/
}
else

PrSetError (iPrAbort); /** cancel from the style dialog =%/
}
}

if (((**thePrRecHdl) .prJob.bJDocLoop == bSpoolLoop) && (PrError{) == noErr))

PrPicFile{thePrRecHdl, nil, nil, nil, &theStatus);

/**
Grab the printing error before you close the Print Manager and the error disappears.
**/

PrintError = PrError{);

PrClose();

/**
You do not want to report any printing errors until you have fallen through
the printing loop. This will make sure that ALL of the Print Manager's open
calls have their corresponding close calls, thereby enabling the Print Manager
to close properly and that all temporary memory allocations are released.

#161: When to Call _PrOpen and _PrClose 7 of 8

if (PrintError != noErr)
PostPrintingErrors (PrintError);

}

if (thePrRecHdl !'= nil)
DisposHandle ((Handle) thePrRecHdl);

e if (PrintingStatusDialog != nil}
DispOSDialog(PrintingStatusDialog):

SetPort (oldPort) ;
3 /*% PrintStuff *»/

Further Reference:

* Inside Macintosh, Volume II-145, The Printing Manager
* Technical Note #118, How to Check and Handle Printing Errors
* Technical Note #122, Device-Independent Printing

#161: When to Call _PrOpen and _PrClose 8of 8

Macintosh 4
Technical Notes .

Developer Technical Support
#184: Notification Manager

Revised by: Rich Collyer October 1989
Written by: Darin Adler April 1988

This Technical Note describes the Notification Manager, the part of the operating system that lets
an application, desk accessory, or driver alert the user.

Changes since June 1989: Made minor changes to the code examples and clarified the
descriptions of what is needed when.

The Notification Manager, in System Software version 6.0 and later, provides the user with an
asynchronous “notification” service. The Notification Manager is especially useful for background
applications; the PrintMonitor application and the system alarm (set by the Alarm Clock desk
accessory) both use its services.

Each application, desk accessory, or device driver can queue any number of notifications. For this
reason, you should try to avoid posting multiple notifications since each one will be presented
separately to the user (i.e., “you have mail,” “you have mail,” etc.).

The Notification Manager queue contains information describing each notification request; you
supply a pointer to a queue element describing the type of notification you desire. The Notification
Manager queue is a standard Macintosh queue, as described in the Operating System Utilities
chapter of Inside Macintosh, Volume II-367. Each entry in the Notification Manager queue has the
following structure:

TYPE NMRec = RECORD

gLink: QElemPtr; {next queue entry}
gType: INTEGER; {queue type -- ORD{(nmType} = 8}
nmf'lags: INTEGER; {reserved}
nmPrivate: LONGINT; {reserved}
nmReserved: INTEGER; {reserved}
nmMark : INTEGER; {item to mark in Apple menu}
nmSIcon: Handle; {handle to small icon}
nmSound: Handle; {handle to sound record}
nmStr: StringPtr; {string to appear in alert}
nmResp: ProcPtr; {pointer to response routine)
nmRefCon: LONGINT; {for application use)}

END;

To use the Notification Manager, you must also use _SysEnvirons (discussed in Inside
Macintosh, Volume V and Technical Note #129) to test the System Software version. If the
System Software is not current and the Notification Manager routines are not present, display an
alert to inform the user that your application requires System Software version 6.0 or newer, then
exit.

#184: Notification Manager 1of5

Using the Notification Manager
Your program can request three types of notification:

+ polite notification: a small icon that periodically appears in rotation with the Apple
in the menu bar;

* audible notification: a sound to be played by the Sound Manager;

* alert notification: an dialog box containing a short message.

In addition, you can place a diamond mark next to the name of the requesting desk accessory or
application in the Apple menu.

After you have notified the user as you feel necessary (placed a diamond mark in the Apple menu,
added a small icon to the list of icons which rotate with the Apple in the menu bar, played a sound,
and presented the user with a dialog box to acknowledge), you should call a response procedure.

How the Notification Manager Handles Notifications

When the Notification Manager handles a notification, it does one or more of the following (in this
order):

* puts a diamond mark next to the requesting application or desk accessory in the
Apple menu

adds a small icon to the list of icons which rotate with the Apple in the menu bar
plays a specified sound

presents a dialog box for the user to acknowledge and dismiss

calls the response procedure

. & &

At this point, the diamond mark in the Apple menu and the icon rotating with the Apple in the menu
bar remain until your application removes the notification request from the queue. The Notification
Manager only presents the sound and dialog box once.

Creating a Notification Request

To create a notification request, you must set up an NMRec with all the information about the
notification you want:

nmMark contains 0 to not place a mark in the Apple menu, 1 to mark the current
application, or the re £Num of a desk accessory to mark that desk accessory.
An application should pass 1, a desk accessory should pass its own refNum,
and a VBL task should pass 0.

nmSIcon contains NIL for no icon in the menu bar, or a handle to a small icon to rotate
with the Apple. (A small icon isa 16 x 16 bitmap, often stored in an 'SICN'
resource.) This handle does not need to be locked, but it must be
non-purgeable.

nmSound contains NIL to use no sound, ~1 to use the system beep sound, or a handle
10 a sound record which can be played with _SndPlay. This handle does
not need to be locked, but it must be non-purgeable.

nmStr contains NIL for no alert, or a pointer to the string to appear in the alert.

#184: Notification Manager 20f5

nmResp contains NIL for no response procedure, —1 for a predefined procedure that
removes the request immediately after it is completed, or a pointer to a
procedure which takes one parameter, a pointer to your queue element. For
example, the following is how you would declare it if it were named
MyResponse:

PROCEDURE MyResponse {nmRegPtr: QElemPtr);
pascal void MyResponse (QElemPtr nmRegPtr) ;

Note that when the Notification Manager calls your response procedure, it does not set up A5 and
low-memory globalis for you. If you need to access your application’s globals, you should save
your application’s A5 in the nmRe fCon field as discussed later in this Note.

Response procedures should never draw or do “user interface” things. You should wait until the
user brings the application or desk accessory to the front before responding to the user. Some
good ways to use the response procedure are to dequeue and deallocate your Notification Manager
queue element or to set an application global (being careful about A5), so the application knows
when the user receives the notification.

You should probably use an nmResp of -1 with audible and alert notifications to remove the
notification as soon as the sound has finished or the user has dismissed the dialog. You should not
use an nmResp of —1 with an nmMark or an nmSIcon, because the Notification Manager would
remove the diamond mark or small icon before the user could see it. Note that an nmResp of -1
does not deallocate the memory block containing the queue element, it only removes it from the
notification queue.

You can also use nmRe £Con; one convenient use is putting your application’s A5 in this field so
the response procedure can access application globals. For more information about this technique,
refer to the section about VBL tasks in Technical Note #180.

Notification Manager Routines

The system automatically initializes the Notification Manager when it boots. To add a notification
request to the notification queue, call NMInstall. When your application no longer wants a
notification to continue, it can remove the request by calling _NMRemove. Neither NMInstall
nor NMRemove move or purge memory, and you can call either of them from completion routines
or interrupt handlers, as well as from the main body of an application and the response procedure
of a notification request,

FUNCTION NMInstall {nmReqPtr: QElemPtr) : OSErr;

Trap macro _NMInstall (SAOSE)
On entry A0: theNMRec (pointer)
On exit DO: result code (word)

_NMInstall adds the notification request specified by nmReqPtr to the notification queue and
returns one of the following result codes:

Result codes neErr No error
nmTypErr (-299) qType field is not ORD(nmType)

#184: Notification Manager 30f5

FUNCTION NMRemove (nmRegPtr: QElemPtr) : OSErr;

Trap macro _NMRemove ($AQ5F)
On entry AQ: theNMRec (pointer)
Cn exit DO: result cocde (word}

_NMRemove removes the notification identified by nmReqPt r from the notification queue and
returns one of the following result codes:

Result codes nokErr No error
qErr Not in queue
nnTypErr (-29%) qlype field is not ORD{nmType)

How to Call _NMInstall and NMRemove

If you do not yet have glue for _NMInstall and NMRemove, you can use the following from
MPW (these are in the include files for MPW 3.0):

Pascal

FUNCTION NMInstall {nmRegPtr: QElemPtr) : OSErr;
INLINE $205F, S$AQ5E, $3E80;

FUNCTION NMRemove (nmReqPtr: QElemPtr) : OSErr;
INLINE $205F, S$SAQSF, S$3EBOQ:;

pascal OSErr NMInstall (QElemPtr nmReqPtr)
= {0x205F, OxAOSE, Ox3E80};

pascal OSErr NMRemove (QElemPtr nmReqPtr)
= {0x205F, OxAO5F, Ox3E80};

Also note that gType must be set to ORD (nmType), which is 8.
The following short code segments demonstrate the use of the Notification Manager in MPW C:

#include <OS0tils.h>
#include <Notification.h>

struct NMRec myNote; /* declare your NMRec */
Handle ManDcneS; /* declare a handle for the sound */
OSErr err; /* declare for err handling */
myNote.qType = nmType: /* queue type -- nmType = § */
myNote.nmMark = 1; /* get mark in Apple menu */
myNote.nmSIcon = nil; /* no flashing Icon */

/* get the sound you want out of your resources */
ManDoneS = GetResource('snd °', soundID);

myNote.nmSound = ManDoneS; /* set the sound to be played

myNote.nmStr = nil; /* no alert box */
myNote.nmResp = nil; /* no response procedure */
myNote.nmRefCon = nil; /* set to nil since I don't need my AS5*/

#184: Notification Manager 4 of 5

Before calling _NMInstall, you need to see if your application is running in the background. If
your application is in the foreground, you really do not need to notify the user, but if your
application is in the background, you should make the following call to install the notification
event:

err = NMInstall {({(QElemPtr) smyNote);

Before continuing, you should handle any errors. If your application is running in the
background, you should wait until it switches to the foreground before proceeding with anything
else. While you are waiting for a resume event, you should take care of other events, such as
updates. You want to make sure that when you are switched back into the foreground you remove
the notification, and the following code does just that:

err = NMRemove ({QElemPtr) &myNote):

Once again, you should be sure to handle any errors.

Further Reference:

* Inside Macintosh, Volume I1-367, V-591, The Operating System Utilities
* Technical Note #129, _SysEnvirons: System 6.0 and Beyond
* Technical Note #180, MultiFinder Miscellanea

#184: Notification Manager 50f5

Macintosh s
Technical Notes ‘

Developer Technical Support

#193: So Many Bitmaps, So Little Time

Revised by: Rich Collyer) October 1989
Written by: Rick Blair April 1988

This Technical Note discusses the routine BitMapToRegion, which converts a bitmap to a
region, and is available in the 32-Bit QuickDraw INIT and from Apple Software Licensing.
Changes since June 1989: Changed references of BitMapRgn to BitMapToRegion to
match the updated MPW and 32-Bit QuickDraw usage, added the trap number, and documented
how and when to use the 32-Bit QuickDraw version versus the object file version.

The following routine is now available to convert a bitmap to a region;
FUNCTION BitMapToRegion(region:RgnHandle; bMap:BitMap) : OSErr;

in C:

pascal OSErr BitMapToRegion(RgnHandle region, BitMap bMap);

The region will be built so that all one bits in bMap are inside the region and all zero bits are
outside of it.

As with all QuickDraw calls which change a region, BitMapToRegion requires you to pass an
existing region (originally created by NewRgn). If the region cannot be built due to an
insufficient heap space or a size greater than 32K, then the routine will return an appropriate error
code and the region will be empty. If the region would have exceeded 32K, the error will be
rgnTooBigErr (-500).

This function is useful for a number of situations where you have (or can produce) a bitmap
representing an area. You can use _CalcMask to produce such a bitmap. Once you have a
region, you can perform region operations (i.e., _PtInRgn,_UnionRgn,or InsetRgn)or
call _DragGrayRgn, for example.

This call is part of the 32-Bit QuickDraw INIT ($A8D7). If you do not wish to depend on 32-Bit
QuickDraw, then you can obtain a version of BitMapToRegion in MPW object format which
can be linked into an MPW program, by contacting Apple Software Licensing:

Apple Software Licensing

Apple Computer, Inc.,

20525 Mariani Avenue, M/S 38-1
Cupertino, CA, 95014

(408) 974-4667

AppleLink: SW.LICENSE

#193: So Many Bitmaps, So Liitle Time 1of 2

If you licensed the older version of this routine, BitMapRgn, contact Software Licensing about
receiving an updated version. We recommend you update your application to use the new version
as soon as possible.

The new version is now named BitMapToRegion to be consistent with the version in 32-Bit
QuickDraw and the MPW interfaces. In addition, BitMapToRegion offers new features. You
can now pass a one-bit pixelmap which has been coerced to a bitmap. If you pass a pixelmap
which is too large, then you will get a pixmapTooDeepErr (-148) error. You can also pass the
portBits of a window, much like you would do with acall to _CopyBits.

There is a potential problem with this routine, since MPW 3.1 include files contain information
about 32-Bit QuickDraw. If you want BitMapToRegion to be available on all machines, then
you must use the object file from Software Licensing. The problem is that when you compile your
application with MPW 3.1 or later, the 32-Bit QuickDraw version gets preference over the object
file. You must comment out the routine in the include files if you want to use the object file. If
you only care about using BitMapToRegion on machines running 32-Bit QuickDraw, then you
need not do anything.

#193: So Many Bitmaps, So Little Time 2of2

Macintosh 2
Technical Notes .

Developer Technical Support
#196: 'CDEF' Parameters and Bugs

Revised by: David Shayer October 1989
Written by: ~ Mark Bennett August 1988

This Technical Note describes known bugs in the Control Manager which affect control definition
functions (' CDEF ' resources).

Changes since August 1988: Updated to reflect known bugs in the posCnt1l and
thumbCnt1 messages and the Control Manager TrackControl call.

The Control Manager chapter of Inside Macintosh, Volume 1-309, describes how to write a control
definition function (' CDEF ' resource). This Note assumes a basic understanding of this chapter,
specifically of the various messages which are sent in the message parameter.

drawCntl (0) and autoTrack (8)

Whena 'CDEF' is called with either the message drawCnt 1 or autoTrack, it is possible for
the high word of the param parameter to contain undefined data which could result in the failure of
routines that rely upon all 32 bits of param being defined. 'CDEF ' resources should only
consider the low word of the param parameter when dealing with the drawCntl and
autoTrack messages.

posCntl (5) and thumbCntl (6)

According to Inside Macintosh, the Control Manager calls a ' CDEF ' with the posCnt 1 message
and the thumbCnt 1 message if an application does customn dragging of an indicator (a thumb),
but not if it does default dragging. This is not true. The Control Manager callsa 'CDEF ' with the
posCnt 1 message if an application does default dragging, which is exactly the opposite of the
way it is documented. The 'CDEF * receives the thumbCnt 1 message regardless of which type
of dragging an application does, however, the results are used only for default dragging (they are
ignored for custom dragging).

_TrackControl

When a user clicks on your control, you normally call _TrackControl, which is supposed to
return zero if the user does not change the control’s setting or the part code if the user does change
the setting. For *CDEF ' resources that implement custom dragging, _TrackControl retums
zero whether or not the user changes the control’s setting. To work around this problem, you must
use another method to find out if the user has changed the control’s setting, such as comparing the
control’s value before and after the call to _TrackControl.

Further Reference:

* Inside Macintosh, Volume I-309, The Control Manager

#196: 'CDEF Parameters and Bugs 1of1

Macintosh s
Technical Notes ‘

Developer Technical Support

#206: Space Aliens Ate My Mouse
(ADB-The Untold Story)

Revised by: =~ Cameron Birse October 1989
Written by: ~ Cameron Birse August 1988

This Technical Note explains how the Apple Desktop Bus (ADB) works on the Macintosh. This
Note covers the boot process, driver installation, use of ADB Manager calls, and answers

commonly asked questions.
Changes since August 1989: Added an additional vendor for ADB cables.

Boot Process

During the boot process, the ADB Manager finds all the devices on the bus and resolves any
address conflicts. An address conflict is defined as two or more devices with the same original
(default) address. A good example of this conflict is a mouse and a graphics tablet that are both at
address 3 (relative device). The ADB Manager resolves these address conflicts as described in
Appendix B of the ADB Specification (Apple Drawing #062-0267-E) and the Q & A section of this
document.

After the address resolution, the devices which have been “moved” due to address conflicts are
now addressed, starting from the highest unused soft address and working down. The system
now loads and executes all the resources of type 'ADBS’ that match the devices on the bus (by
original address).

Once all the ADB service routines are installed, the ADB transceiver (microcontroller) chip starts
polling the active device. The active device is defined as the last device to send data. Since the
mouse (pointing device) is the most likely device to have data ready at any given time, it defaults as
the active device after startup.

The transceiver polls the active device (approximately every 11 milliseconds), with a Talk RO
command. If the active device has new data, it can respond with it, and if it does not, it just times
out. If any other devices have data to send, they can assert SRQ (refer to Figure 5 of the ADB
Specification) at the end of the talk RO command. When the host detects an SRQ, it begins polling
all addresses with a talk RO command until one returns data. That device then becomes the active
device. .

#206: Space Aliens Ate My Mouse 1of6

Devices have no way of knowing if they are the “active device”. The algorithm for a device with
data ready to send is as follows:

Wait for a talk RO command (this happens every 10 milliseconds).

If the Talk RO is for you, then return the data.

If the Talk RO is not for you, wait for the end of the command, and assert SRQ.
If the Talk RO is addressed to you, then respond with your data.

Now that a device has been polled, the host retrieves the data from the bus and calls the service
routine installed for that device (service routines are installed by calling _SetADBInfo and are
maintained by the ADB Manager). The system passes pointers to the service routine itself, its data
area, and the data received from the device, as well as the ADB command byte that caused the
routine to be called.

Normally, the service routine does not need to use the ADBOp call to retrieve data. The ADB
“philosophy” assumes that register zero of a device is the main data transmission register. Since
register zero is automatically polled by the system, there should be no need to call ADBOp from
the service routine. Typically, ADBOp is used to set modes of a device, or to interrogate the
device for status—the sort of things that should not need to be done more than once or twice during
normal operation.

It is important to note that ADB service routines are called at interrupt time, which means that they
must follow all the rules regarding code that executes at interrupt time. (See Inside Macintosh
references to VBL tasks and Device Manager I/O completion routines.)

Installing an ADB Service Routine and Optional Data Area

+ Using the 'ADBS' resource mechanism. At boot time the system searches for
'ADBS ' resources in the System file. The system matches desktop bus devices by
their original address to an ' ADBS' resource (i.e., if the machine has a device that

responds at address 4, the system looks for an 'ADBS’ resource with ID=4).
When the system finds these resources, it loads and executes them. The limitation
of this method is that there can only be one ' ADBS' resource for each address on
the bus.

A typical ' ADBS' resource allocates space in the system heap for its service routine
and, optional, data area. Next, it moves the service routine into the allocated space
and initializes the data area, if necessary. This code should also instal]l an

_ADBRelInit preprocessing routine to deallocate the memory used by the service
routine (Inside Macintosh V-367).

When the system loads and executes an 'ADBS' resource, it passes the following
parameters:

A0 = Address of 'ADBS ' resource in memory.

DO =ADB device address (0-15). This address may be different than the “original
address,” since it occurs after address resolution.

D1 = ADB Device Type (same as the handler ID)

With this information, the 'ADBS' code can call SetADBInfo to install the
service routine and data area. The installer should make sure the handler ID
(Device Type) is the one it expects.

#206: Space Aliens Ate My Mouse 20f6

» Install the service routine and data area usirg an ' INIT' resource. This method
works the same as an ' ADBS ' resource, except you are not passed the parameters
in A0, DO, and D1, so you at least need to interrogate the ADB Manager (using
_GetIndADB) to get the information. Remember to lock yourself down.

» Usethe 'INIT' resource method from within an application.

Answers

Question:
Answer:

Question:

Answer:

to Commonly-Asked ADB Questions

I need information on developing an Apple Desktop Bus product.
Apple’s Desktop Bus and ADB Device Specifications are a licensable product
available through Software Licensing. For more information, contact:

Apple Software Licensing

Apple Computer, Inc.,

20525 Mariani Avenue, M/S 38-1
Cupertino, CA, 95014

(408) 974-4667

AppleLink: SW.LICENSE

Additional ADB references are as follows:

Macintosh
Inside Macintosh, Volume V, The Apple Desktop Bus
Macintosh Family Hardware Reference

Apple I
Apple llgs Hardware Reference Manual

Desktop Bus
Apple Hgs Firmware Reference Manual

General
Baum, Peter. “Boarding the Bus,” MacUser, July 1987, p. 142.
“An Overview of Apple Desktop Bus,”
Call APPL.E, June 1987, p. 24.

1 would like to extend the keyboard cable for my Macintosh. How can I do this, and
how can I make the extension?

The ADB specification states the maximum length of all cables on the Desktop Bus is
five meters. If you wish to use longer cables than those supplied with the ADB
device, Kensington MicroWare (800) 535-4242, Monster Cable (800) 331-3755, and
Data Spec (800) 431-8124 all supply them.

Disclaimer: This listing for Kensington MicroWare, Monster Cable, and Data
Spec neither implies nor constitutes an endorsement by Apple
Computer, Inc. If your company supplies these cables and you
would like to be listed, contact us at the address in Technical Note #0.

#206: Space Aliens Ate My Mouse 3of6

Question:

Answer:

Question:

Answer:

How can I use the LEDs on the Apple Extended Keyboard?
Using the LEDs on the extended keyboard involves the _ADBOp call. Once you
determine that you have an extended keyboard (with _CountADBs and

_GetIndADB), then register 2 of the extended keyboard has the LED toggles in the
low 3 bits.

Therefore, you would do a Talk to register 2 to have the device send you the contents
of register 2, manipulate the low three bits to set the LEDs, and then pass the
modified register 2 back to the device with a Listen to register 2 command.

The Apple Extended Keyboard has an ID of 02 and a device handler ID of 02, while
the Apple Standard Keyboard has an ID of 02 and a device handler ID of 01.

Note: At this point it is not clear what Apple has in mind for these LED:s, so you are
using them at your own risk.

I am confused about the service routines and data areas passed in the _ADBOp call.
What does it all mean?
That ’s a good question.

FUNCTION ADBOp (data:Ptr; compRout:ProcPtr; buffer:Ptr;

commandNum: INTEGER) : oserr;

data is a pointer to the “optional data area”. This area is provided for
the use of the service routine (if needed).

compRout is a pointer to the completion or service routine to be called when

the _ADBOp command has been completed. It has the same
meaning as the service routine passed to the _SetADBInfo call.
buffer is a pointer to a Pascal string, which may contain zero to eight
bytes of information. These are the two to eight bytes that a
particular register of an ADB device is capable of sending and
receiving,
commandNum is an integer that describes the command to be sent over the bus.

There is some confusion over the way that the completion routines are called from
_ADBOp. This calling may be done in one of the following three ways:

* You do not wish to have a completion routine called, as in a Listen command.
Pass a NIL pointer to ADBOp.

* You wish to call the routine already in use by the system for that address (as
installed by SetADBInfo). Call _GetADBInfo before calling _ADROp, and
pass the routine pointer retumed by GetADBInfo to _ADBOp.

* You wish to provide your own completion routine and data area for the __ADBOp
call. In this case, simply pass your own pointers to the ADBOPp call.

#206: Space Aliens Ate My Mouse 4 0of 6

Question:
Answer:

Question:

Answer:

Remember, there should rarely be areascnto call ADBOp. Most cases are handled
by the system’s polling and service request mechanism. In the cases where it is
necessary to call ADBOp, it should not be done in a poiling fashion, but as a
mechanism of telling the device something (i.e., change modes, or in the case of our
extended keyboard, turn on or off an LED).

How can I make my Macintosh II or [Ix power up automatically after a power outage?
The Macintosh II and IIx power can be tummed on via the keyboard through the Apple
Desktop Bus port (ADB) since the reset key is wired to pin two of the ADB
connector. When you press this key, it pulls pin two to ground and initiates a
power-on sequence. You can emulate this feature with a momentary switch
connected to the ADB port. Note that the switch on the back panel of a Macintosh
IIcx can be locked in the On position to automatically restart after a power outage

An idea for a power-on circuit would be to have a momentary (one-shot) relay
powered by the same outlet that powers the machine and have the contacts close pin
two of the ADB connector. (Without having tried this, I am concerned that you may
need a delay before the relay fires to give the AC time to stabilize, etc.)

I’'m more than a little confused about the way ADB device address conflicts are
resolved at boot time. Can you enlighten me with your infinite wisdom, Cameron?
The method used by the host to separate and identify the devices at boot time is not
well documented, so I’ll try to describe it with some clarity.

The host issues a Talk R3 command to an address. Let’s say there are two devices at
that address. Both try to respond to the command, and when they try to put the
random number (the address field of register 3) on the bus, one of them should detect
a collision. The one that detects the collision backs off and marks itself (internally) as
unmovable.

The device that did respond successfully is then told to move to a new address (the
highest free address). By definition, moving to a new address means that it now
responds only to commands addressed to this new address, and it ignores commands
to the original address.

The host then issues another Talk R3 command to the original address. This time the
second device responds without detecting a collision. When it successfully completes
a Talk R3 response, it marks itself as movable. It then is told to move to a new
address.

The host again issues a Talk R3 command to the original address. Since there are no
more devices at that address, the bus times out, and the host moves the last device
back to the original address.

At this point, the host moves up to the next address that has a device and begins the
process all over.

Generally, when having trouble separating devices on the ADB, it is because the
collision detection doesn’t work well. In fact, this problem is evident on Apple
keyboards. The bug is that the random number returned in R3 isn’t really a random
number. Since the microcontrollers on the keyboards are clocked with a crystal, they
tend to generate the same “random’ number, so when the system attempts to separate
them with a Talk R3 command, they never detect the collision.

#206: Space Aliens Ate My Mouse 50f6

One possible solution is to use a low-tolerance capacitor on the reset line of the
microcontroller, thereby forcing the time from power on to the time reset is negated to
be fairly random. In this way, the microcontrolier can start a count until it receives
the first Talk R3 command, and hopefully it is a different number than another device
at the same address on the bus.

If you find your device shows up at all addresses, it may be because it is responding
to the move address command when it should be marked as unmovable.

Finally, if the device doesn’t show up at all, it may be because it is unable to respond

to the Talk R3 command at boot time (i.e., not able to initialize itself and start
watching the bus in time).

Further Reference:

Inside Macintosh, Volume V-361, Apple Desktop Bus
Macintosh Family Hardware Reference, Chapters 11 & 19
Technical Note #160, Key Mapping

MacDTS Sample Code #17, TbitDrvr

#206: Space Aliens Ate My Mouse 6of 6

Macintosh s
Technical Notes .

Developer Technical Support

#221: NuBus Interrupt Latency
(I Was a Teenage DMA Junkie)

Revised by: Cameron Birse October 1989
Written by: Cameron Birse, Mark Baumwell, & Rich Collyer December 1988

This Technical Note discusses NuBus™ interrupt latency, and why, contrary to popular belief, the
Macintosh is not a real-time machine,
Changes since December 1988: Changed sample code to defer cursor rendering to a deferred
task rather than a “pseudo-VBL” task.

The Macintosh is not a real-time machine. The Macintosh does not support DMA. There are
many variables in the Macintosh that make it impossible to deterministically figure out exactly when
things are going to happen. Despite these facts, there are those who must push the envelope. For
these courageous adventurers, we provide the following information in the hope that it speeds your
journey.

According to empirical evidence gathered by Apple engineering, typical NuBus to Macintosh
transaction times fall in the 800 nanosecond to 1 microsecond range. Although the NuBus
specification points to faster accesses, you should consider these times realistic since there is
always some overhead. Synchronizing the NuBus and Macintosh clocks, for example, can cost a
NuBus cycle.

One technique that can help optimize NuBus transfers is implementing bus locking. The bus can
be locked for a small set of transactions (we recommend a maximum of four transfers), then
unlocked for rearbitration. In order to allow fairness, it is important to lock the bus for as short a
time as possible.

All processor interrupts and slot interrupts may be held off for various amounts of time by different
parts of the system, so you must never count on instant interrupt response. To help deal with these
delays, you should consider your data rate and include ample buffering on your card for your data.
The following are just a few of the many system variables which affect interrupt latency:

» Floppy disk accesses turn off interrupts for “significant” (read milliseconds)
amounts of time. For instance, some disk accesses (i.e., block reads) can disable
interrupts for as much as 15 milliseconds. Inserting a blank floppy disk turns off
interrupts for up to 25 milliseconds.

» Formatting a floppy disk turns off interrupts for up to 300 milliseconds.

» LocalTalk accesses can disable interrupts for up to 22 milliseconds.

* Assuming your interrupt handler is going to want to access your card immediately,
there is also the arbitration for mastership of the bus, which could be in use at the
time, and in the worst case, lock the bus, keeping you from accessing your card.

* All slot interrupts, including slot VBL interrupts, hold off other slot interrupts.
This means another card’s interrupt routine (installed via _SIntInstall)ora
slot VBL interrupt routine (installed via _SlotvInstall) runs to completion
with interrupts of the slot level and below disabled. VBL tasks may be of varying
length, since applications, as well as drivers, can and do, install VBL tasks.

#221: NuBus Interrupt Latency (I Was a Teenage DMA Junkie) 1of3

+ Cursor updating (performed during slot VBL time) time ranges from around 700
uSec - 900 nSec for one-bit to eight-bit depth. Since this is done at slot VBL time,
it holds off all other slot interrupts until it is finished.

Warning: The performance figures cited in this Note are based on current
Macintosh models; they are not guaranteed to remain the same in
future machines.

The following code lets you defer the cursor updating routine by having it run as a
deferred task. This change means that the actual cursor rendering is performed
with interrupts enabled, which allows the occurrence of other interrupts. It'should
be noted that there is a slightly visible flickering of the cursor as a result of using
this technique.

LA LSRR RS ERE SRR RS R Rl RSl hl Rt Eash]

% %k

falald Defer Cursor

*k ok This program defers the cursor updating that normally happens
kel during slot VBL time. Since the cursor updating can take as
*xx long as 900uSec, and holds off other slot interrupts, it is
il handy to be able to defer the updating to a more civilized time.
il This program replaces the normal jCrsrTask with a routine that
il installs the real jCrsrTask routine as a deferred task.

* 4k

*xw Build commands:

LA

wokw asm DeferCrsr.a -lo DeferCrsr.a.lst -1

ok link DeferCrsr.a.o -o DeferCrsr

(222X RSS2SR 2R R R REERR SRR XA R R iRt R SRR R R ERS]

STRING ASIS

PRINT OFF
INCLUDE 'Traps.a’
INCLUDE 'SysEqu.a’
PRINT ON

e 30 3 9 % % I e dr 3 o g gk ok gk 3 ok o ok ok ok e ko o e ok Entry v % Kk A dr ok dr ek e ok ok ok gk ok e ok i o ok ok ok ok ol o ok ok

Entry MAIN

bra.s Entry2

i e e ol vk e de ok ok ok ok ok Y W W Y ik ok de e die e o e e e e o MyDefTaSk o de e e A ke ok ok o e vk o o g ol ko e e e ke ok ok ke b e ke

TaskBegin
MyDefTask
DC.L 0 ;qlink (handled by 0S5}
DC.W 0 ;qType (equ 7, find this value in MPW AIncludes)
DC.W 0 ;dtFlags (reserved, don't mess with 'em)
bc.L 0 ;dtAddr (pointer to actual routine to be performed)
DC.L 4] ;dtParm {(optional parameter, this example doesn't use it}
DC.L o ;dtReserved (should be zero, DC.L 0 takes care of that)
SysCrsrTask
BC.L o]

#221: NuBus Interrupt Latency (I Was a Teenage DMA Junkie) 20f3

LA LR SRS LR R EEETE R X B R MijrsrTask e R AR RS RS EERERER ER SR SRS

MyiCrsrTask
movem, 1 a0/do, -(sp)
lea MyDefTask,al ;jpoint to our deferred task element
move.l SysCrsrTask, dtAddr {(a0) jset up pointer to routine
move . w #dtQType, dt Type (a0} ;set queue type
_DTInstall ;install the task
movem, 1l {sp)+,a0/dC
rts
TaskEnd

e de ook ok ok ok e e ok ok sk g e K e o K ok ok e e W ke ok ok Entryz Ak ko ko dkhkkkkkx ok kkx

TaskSize BEQU TaskEnd-TaskBegin
Entry2
move,l #TaskSize,d0 ;TaskSize = Deferred task element, room for

; a pointer (to original jCrsrTask), and
;our jCrsrTask

_NewPtr ,5Y5, CLEAR ;make a block in the system heap
bne.s Abort ;no room at the Inn, head for the manger
move.l a0, a2 ;got a good pointer, keep a copy
move.l ag, al ;a0 = source, al = destination for
; BlockMove
lea MyDEFTask, al ;copy the task, etc. into the system heap
move.w #TaskSize,dd
_BlockMove
lea dtQEl1Size (a2}, al ;move original jCrsrTask pointer into our
move.l jCrsrTask, (a0) ; pointer holder
lea dtQElsize+4(a2),al sreplace jCrsrTask pointer with a pointer
move.l a0, jCrsrTask 7 to our 3CrsrTask
abort rts ;all's well that ends..
END

* Note, as an aside, that while using MacsBug, interrupts are disabled.

In summary, you cannot depend on real-time performance when transferring data between NuBus
and the Macintosh. It is important to provide sufficient buffering on the card to allow for the
variance in interrupt latency. Driver calls can be used to determine the amount of data available to
be transferred, and transfers can be made on a periodic basis.

Remember too, since the entire system is so heavily interrupt-driven, it is very unfriendly for
anyone to disable interrupts and take over the machine for long periods of time. Doing so almost
always results in a sluggish user interface, something which is usually not well received by the
user.

Further Reference:

« Inside Macintosh, Volume V, The Device Manager

* Inside Macintosh, Volume V, The Vertical Retrace Manager

* Macintosh Family Hardware Reference

* Designing Cards and Drivers for the Macintosh IT and Macintosh SE

NuBus is a trademark of Texas Instruments

#221: NuBus Interrupt Latency (I Was a Teenage DMA Junkic) 3of3

Macintosh Z
Technical Notes '

Developer Technical Support
#238: Getting a Full Pathname

Revised by: Keith Rollin October 1989
Written by: ~ Keith Rollin June 1989

This Technical Note describes how to generate a full pathname, given either a Working Directory
ID or areal vRefNum and a DirID. By using the techniques shown in this Note, you can find the
full pathname from information such as that returned by Standard File.

Changes since June 89: Added a note on how to check for A/UX. Fixed bug in C version:
BlockMove () parameters were reversed in pStrcpy () ; added range checking to pStrCat ();
changed references from “longint” to “long”. Fixed bug in Pascal and C versions: Changed
fsRtDir to £sRtdirID and made references to gHaveAUX consistent.

This Note presents two routines. The first routine is called Pat hNameFromWD, It takes an HFS
Working Directory 1D and returns the full pathname that corresponds to it. It does this by calling
_PBGetWDInfo to get the vRefNum and DirID of the real directory. It then calls
PathNameFromDirID and returns its result.

PathNameFromDirID takes a real vRefNum and a DirID and returns the full pathname that
corresponds to it. It does this by calling PBGetCat Info for the given directory and finding out
its name and the DirID of its parent. It then performs the same operation on the parent, sticking
its name onto the beginning of the first directory. This whole process is continued until we have
processed everything up to the root directory (identified with a DirID of 2).

Warning

This Note is being released in response to demand from developers. However, for the following
reasons, generating full pathnames is highly discouraged:

« Problems arise when accessing volumes that use file systems other than HFS. For
instance, PathNameFromDirID uses a butcherous hack to be A/UX friendly.
AJUX likes subdirectories separated by slashes in a pathname, rather than colons.
This routine automatically uses colons or slashes as separators based on the value
of gHaveAUX. To check for the presence of A/UX, examine bit 9 of
HWCfgFlags. If it is set, you are running under A/UX. This global must be
initialized correctly for this routine to do its thing. However, because of this
dependency on the idiosyncrasies of file systems, generating full pathnames for
other than display purposes is discouraged; it changed in the past when A/UX
was implemented, and it may change again in the future to support other file
systems such as ProDOS, MS-DOS, or OS§/2.

+ One reason developers have stated for needing to know the full pathname for is so
that they can remember the location of a particular file. Saving a file’s full
pathname should only be used as a last resort. Instead, you should remember the
DirID of the directory the file is in along with it’s name. This way, you will still
be able to find your file even if the directory has been moved. Under System 7.0

#238: Getting a Full Pathname 1of5

or later, save the file’s unique 32-bit ID number as well, so that you can also find
the file even if it’s name has changed.

Either of these methods may fail if a volume has been restored from a backup. In
that case, you might be able to find the file by searching with its full pathname. If
you find the file, note again the Dir 1D of the directory it is in, and save it for
future use. If running under 7.0 or later, also note the file’s ID number.

The routines below are written to return Pascal strings (a length byte followed by
the ASCII characters). Hence, the limit on the length of a Pascal string is 255
characters. However, a file’s full pathname may be longer than 255 characters.
Any routine you write should be prepared for this contingency.

The reason why the sample routines below were written to return Pascal strings is
because that’s the way the File Manager likes them. However, as you now know,
a file’s full pathname may be longer than that acceptable to the File Manager.
Therefore, even if you do get fancy and use things like handles and Munger to
create a mondo-length filename, you will still have to parse it into pieces less than
255 bytes for the File Manager to handle. Simply using a DirID is a lot easier.

These routines assume the existence of HFS. If you intend for your program to
run under MFS, then you should make the appropriate checks and write special
cases accordingly.

MPW Pascal

(** PathNameFromDirID **********i**t***************t******t**************t***t*)

FUNCTION PathNameFromDirID(DiriID: longint; vRefNum: integer): str2533;

VAR
Block: CInfoPBRec;
directoryName, FullPathName: str255;

BEGIN

FullPathName:="'";

WITH Block DO BEGIN
ioNamePtr:=@directoryName;
icDrParID:=DirlD;

END;

REPEAT
WITH Block DO BEGIN
ioVRefNum:=vRefNum;
ioFDirlindex:=-1;
ioDrDirID:=Block.ioDrPariD;
ENC;
err ;=PBGetCatInfo (@Block, FALSE) ;

IF gHaveAUX THEN BEGIN
IF directoryName[l]<>'/' TEEN BEGIN
{ If this isn't root (i.e. "/"},
{ append a slash ('/") }
directoryName:=concat (directoryName, */"'};
END;
END

#238: Getting a Full Pathname

20of5

ELSE BEGIN
directoryName:=concat (directoryName, ': ') ;
END;
FullPathName:=concat (directoryName, FullPathName) ;
UNTIL (Block.ioDrDirID=fsRtDirID)};

PathNameFromDirID:=FullPathName;
END;

(** ?athNameFromWD *i******************tttt*****'ﬁ*****************it**‘l’**‘k*****)

FUNCTION PathNameFromWD (vRefnum: longint): str255;

VAR
myBiock: WDPBRec;
BEGIN
{ PBGetWDInfo has a bug under A/UX 1.1. If vRefNum is a real vRefNum
{ and not a wdRefNum, then it returns garbage, Since A/UX has only 1
{ volume ({(in the Macintosh sense) and only 1 root directory, this can
{ occur only when a file has been selected in the root directory (/).
{ Sc we look for this and hard code the DirID and vRefNum. }
IF (gHaveAUX) AND (vRefnum=-1} THEN BEGIN
PathNameFromWD:=PathNameFromDirID(2,-1);
END
ELSE BEGIN
WITH myBlock DO BEGIN
ioNamePtr:=NIL;
ioVRefNum:=vRefnum;
ioWhIndex:=0;
1oWDProcID:=0;
END;
{ Change the Working Directory number in vRefnum into
(a real vRefnum and DirlD. The real vRefnum is
{ returned in ioVRefnum, and the real DirlD is
{ returned in ioWDDirID. }
err :=PBGetWDInfo{@myBlock, FALSE) ;
WITH myBlock DO
PathNameFromWD:=PathNameFromDirID (ioWDDirID, ioWDVRefnum)
END;
END;

MPW C

/** PathNameFromDirID **i**"l'**i***ﬁi**ﬁ*******************************tt****t*/

char *PathNameFromDirID(DirID, vRefNum, s)

long DirlD;
shert vRefNum;
char *sy

#238: Getting a Full Pathname Jofs

CInfoPBRec block;
5tr2s55 directoryName;

*5 = Q;
block.dirInfeo.ioNamePtr = directoryName;
block,.dirInfo,ioDrParlD Dirll;

do {
block.dirInfo,ioVRefNum = vRefNum;
block.dirlnfo.iocFDirIndex = -1;
block.dirInfo.ieDrDirID = block.dirInfo.ieDrPariID;

err = PBGetCatInfo(ablock, false);
if (gHaveAUX) {
if (directoryName[l] != */')
/* If this isn't root (i.e. '/"), append a slash ('/'}) */
pStrcat (directoryName, "\p/");
} else
/* Append a Macintosh style colon (':') */
pStrcat {(directoryName, "\p:");
pStrecat {(directoryName, s);
pStrepy (s, directoryName) ;
} while (block.dirInfo.ioDrBirID != fsRtDirID);

return(s);

/ti PathNameFrome ***"****'ﬁ*******\Q******it******t1(**********i****t***********/

char *PathNameFromWD {vRefNum, s)
long vRefNum;
char *s;

WDPBRec myBlock;

/*

/* PBGetWDInfo has a bug under A/UX 1,1. If vRefNum is a real vRefNum
/* and not a wdRefNum, then it returns garbage. Since A/UX has only 1
/* volume {in the Macintosh sense) and only 1 root directory, this can
/* occur only when a file has been selected in the root directory (/).
/* So we look for this and hard cocde the DirID and vRefNum. */

if (gHaveAUX && (vRefNum == -1))
return (PathNameFromDirID(2,-1,s});

myBlock.ioNamePtr = nil;
myBlock.ioVRefNum = vRefNum;
myBlock.ioWDIndex = 0;
myBlock.ioWDProcIl = 0;

/* Change the Working Directory number in vRefnum into a real vRefnum */
/* and DirID. The real vRefnum is returned in ioVRefnum, and the real */
/* DirlID is returned in ioWDDirlID. */

PBGetWDInfo(&myBlock, false);

return (PathNameFromDirID (myBlock.ioWDDirID, myBlock.ioWDVRefNum, s));

#238: Getting a Full Pathname 40f5

/** pstrcat / pstGCy ***tt****t**************t***********t***tttt********t**tt[

/*

f* A couple of utility routines. C is thoughtless encugh tc not really

/* support P-strings. In order to perform string coples and concatenations,
/> these routines are provided.

/\&

/***'ﬁi***ttt****************ti*'lt1’**t**********t*t**********i***ttt*************/

#define MIN{(a,b} {({{al<(b))?{a):(b})

char *pStrcat(dest, src)

unsigned char *dest, *srcy

{
iong slen = MIN(*src, 255 - *dest);
BlockMove ({src + 1, dest + *dest + 1, sLen};
*dest += slen;
return {dest);

char *pStrcpy(dest, src)
unsigned char *dest, *src;

{
BlockMove(src, dest, {long) *src + 1};

return (dest);

Further Reference:

o Inside Macintosh, Volume 1V-89, File Manager

#238: Getting a Full Pathname

S5of5

Macintosh ’
Technical Notes .

Developer Technical Support

#244: A Leading Cause of Color Cursor Cursing

Revised by: Alan Mimms October 1989
Writtenby: Alan Mimms June 1989

Working with color cursors you create from scratch can cause headaches. This Technical Note
may help a bit.
Changes since June 1989: Added a warning about purgeable 'clut ' resources.

If you’re building an application that creates color cursors, you may encounter some quirks present
in Color QuickDraw that manifest themselves in hard-to-understand ways.

If your cursor is, say, 15 pixels tall and 9 pixels wide, you might be tempted to use these values
for the bounds.bottom and bounds. right, respectively, in your cursor’s pixel map.
Don’t. The problem is that when the cursor’s image needs to be expanded (i.e., when you
specify a two bit-per-pixel cursor and the mouse pointer is on an eight-bit screen) the
_SetCCursor trap rounds the width of the pixel map in such a way that you’ll get only the space
required for a 15 by 8 pixel map allocated for the expanded cursor data. When the cursor’s image
is expanded into this too-small expanded cursor data handle as a 15 by 9 pixel map, something in
your heap will get munched.

The cure is simple. Make certain that you always specify that the pixmapHandle”” .bounds
be 16 by 16. This will cause _SetCCursor to properly allocate the expanded data area, and all
will be well in the land. Since the amount of data drawn for a cursor is specified by the cursor’s
pixel values and 'clut ' resource, trying to save a few bytes by making the bounds rectangle
smaller than 16 by 16 wouldn’t have been very helpful anyway.

Another potential problem is with the color cursor’s color table. If you load the color table from a

'clut ' resource using _GetCTable, you should make sure that the 'clut ' is marked
non-purgeable while the color cursor is in use. If you do not take this precaution, bombs will
occur if your *clut ' gets purged at in inopportune time.

#244: A Leading Cause of Color Cursor Cursing 1of1

Macintosh ’
Technical Notes '

Developer Technical Support

#247: Giving the (Desk)Hook to INITs

Revised by: Pete Helme October 1989
Written by: Pete Helme August 1989

This Technical Note discusses INIT evils, the foremost of which deals with clearing DeskHook
and DragHook at INIT time.
Changes since August 1989: Added warning about clearing DragHook.

If you’ve survived the typical DTS Tirade* and still feel the need to display a dialog box or window
in an INIT, you need to be aware of a problem which exists on Macintoshes earlier than the
Macintosh II (remember those?). There is a low-memory global named DeskHook ($A6C),
which can contain a pointer to a routine responsible for painting the Macintosh desktop. Ifitis
NIL, which is usually the case, the System paints the desktop with the standard pattern.

When you start displaying dialog boxes or windows that obscure the desktop in your INIT (this is
really hard not to do, so keep reading and don’t let us catch you skipping ahead to another
Technical Note with pictures of human genetic experiments gone sour—you know which one 'm
talking about), the System looks at DeskHook for a desktop updating routine. Since the
Macintosh II, the System has cleared this hook prior to calling your INIT; however, on machines
before the Macintosh II, this hook is not cleared before the System calls your INIT, so there is
usually some junk hex lounging about in there. Since DeskHook is not NIL, when the System
tries to use and perform a JSR to this “address,” it blows big chunks.

So unless you like big chunks, the easy way to fix this problem is to clear DeskHook before
doing any window drawing. The most logical time to do this is during your initialization:

PEA thePort (A6) : initialize own grafPort off A6
_InitGraf

_InitFonts

_InitWindows

_TEInit

CLR.L "-(AT) .

_InitDlalogs

CLR.L $AsC ; DeskHook

For you high-level types, this translates into:

procedure ClearDeskHook;
inline
$42B8, S$0A6C; { CLR.L $A6C ; DeskHook }

It doesn’t hurt to clear it on newer machines either, even if it is already clear (you’ll just have to
trust me on this one), so go ahead and clear it all the time.

#247. Giving the (Desk)Hook to INITs 1of3

Note: Some INITs might actually use DeskHook. However, the popular ones that paint @
a picture on the desktop, which you might think use it, do not. They use other
methods. (We know, we checked. We have the technology.) For those of you
who have seen a real procedure pointer in location $A6C on earlier Macintoshes,
don’t worry. The system does not actually set De skHook for its own use until the
first application loads, so clearing it while INITs load is okay.

If there is some daring INIT out there which sets DeskHook, we haven’t heard
about it. As is the case with many low-memory globals, using DeskHook has
never been supported.

Watch Out For This Guy Too

It should also be noted that DragHook ($9F6) is not cleared during INIT time on early
Macintoshes either, and it will probably contain $FFFFFFFF. I guess no one in early Macintosh
System Software wanted DeskHook to be lonely. DragHook can contain a pointer to a
procedure that is called continuously while the mouse button is down. If you have a user interface
at INIT time that ultimately calls TrackGoAway for windows or _TrackControl for
controls, look out. If the control is of the type to allow one of it’s parts to be dragged with an
outline, like a scroll bar’s thumb, it calls _DragTheRgn, which checks to see if DragHook is
NIL, and if it is not, it tries to perform a JSR to whatever address is there. _TrackGoAway also
tries to perform a JSR to that address if it’s not NIL. So make sure DragHook is clear before you
attempt to use one of these routines.

In fact, if you've got a lot of spare time, like you’re on the Voyager 7 project waiting to come into
contact with Black Lectroids and you have an old Macintosh 512KE or Plus lying around, why not
try randomly clearing out all low-memory globals and see what does and doesn’t crash? Sure to
be an ice breaker at parties.

#247: Giving the (Desk)Hook to INITs 20f3

(Asterisk)

What am I yakking about? If you’ve ever written to DTS about getting help with displaying some
kind of modal monster at INIT time (remember this for the later quiz kids, that’s the time before
this sort of thing should normally happen), you know of what I yak.

We have this pet peeve with INITs that interrupt the boot process with a modal dialog box which
asks us to enter our name then proceeds to ask us how many characters we just entered and what
we had for dinner, especially when we’ve left the desk to go get a fix of a highly caffeinated
substance. INITs were created for developers (and us) to install system patches and device drivers
and make the occasional rude startup sound to annoy the person occupying the cube next to ours.
INITs were not developed to ask for personal (asexual) histories.

We do not mean to say that we don’t like all graphics at boot time. The ShowINIT icon
mechanism that was popularized by Paul Mercer is great. In fact, we encourage it’s use and we
gladly give out the ShowINIT MPW object file, with installation help, to anyone who asks for it.
This is an excellent method for a developer to inform a user whether a ROM patch or device driver
has been successfully installed (show the red X through the icon on the rare occasion when things
go wrong). Of course, this doesn’t work if some non-social INIT makes an _InitWindows
call, which wipes clean the entire screen (and with it all previous ShowINIT icons). You may
argue that having the InitWindows trap wipe out the entire screen at INIT time is a bad
Macintosh OS INIT-time design, but this is one of our biggest complaints with the whole INIT
look-at-my-fancy-splash-screen-or-complete-my-insanely-great-modal-dialog-box phenomenon.

If you feel the need to notify the user of an important occurrence during boot time, initialize a
notification request with the Notification Manager in your INIT code (see Technical Note #184,
Notification Manager, and yes, it is perfectly legal to use at INIT time), and the system will notify
the user after the boot process, when the event mechanism starts. The now alerted user can then
activate your desk accessory, application, or whatever and you can perform whatever kind of
pyrotechnics you want.

If you are going, “But, but, but...” because various Apple products are guilty of INIT evils, then
you should realize that we are giving Apple engineers the same, if not more, grief to cleanse their
acts as well.

It’s not that we're telling you that you cannot put up a modal dialog box at INIT time if you feel
like it’s really-absolutely-positively-it-was-your-dying-mother’s last-wish-necessary, It’s just that
DTS would like to see a cleaner Macintosh interface (as I'm sure you all would), and a more
uniform boot time appearance can help achieve this goal.

#247: Giving the (Desk)Hook to INITs 3of3

Macintosh z
Technical Notes '

Developer Technical Support
#248: DAs & Drivers in Need of (a Good) Time

Revised by: Pete Helme October 1989
Written by: Pete Helme August 1989

This Technical Note describes a few complications which rear their rather ugly little heads when a

desk accessory or driver needs periodic time. It also presents a few solutions to work around these

problems and make life easier, at least periodically.

Changes since August 1989: Corrected BitClr and BitSet examples. Okay, I admit

it. I was having too good of a time whenT wrote the original Note and messed up the bit

gigmipulations at the end. My vision was blurred; I was in no condition to see those tiny little
ings.

See Jane’s Heap, See accRun...

MultiFinder is our friend. Our friend, that is, until a driver or desk accessory is called when in an
unknown heap. Then things get complicated. When a driver is called at accRun time under
MultiFinder, one can never be exactly sure of the heap in which it will find itself. When a DA
reccives an open call, or any other messages besides acCRun, under MultiFinder, the system heap
is switched in as the current heap. [This is true unless a user “force” switched the DA into an
application heap by holding down the Option key when opening the DA. In this particular case, the
application’s heap will be switched in.} During the accRun cycle, whatever heap is currently
switched in will be the driver’s heap as well, and surprise, surprise, that heap may not be the
system heap.

This situation could be a real problem if your DA allocates memory or creates a window during that
accRun period. Why? What if the application whose heap the DA is in suddenly slips a bit and
decides to call it quits before the DA? You’d be stuck with allocated blocks in a zone that suddenly
doesn’t exist. Eventually, your DA would go belly up, and whoever bought your DA or driver
would be on the phone to 2 local dealer demanding retribution.

So what’s the solution? The easiest way out of this situation is to simply not do any memory
allocation or display any newly created windows or dialog boxes during accRun. So what if it’s
a cop out, it’s easy to implement.

Being the good souls that we are in DTS, we’re not going to leave you hanging there with nowhere
to go. We prefer you heed the previous solution, but we realize that there may be rare times when
you might need a window during accRun. We've devised a solution, albeit a bit strange, but one
that’s easy enough to use.

The basic problem is that the DA needs to know in which heap it should be allocating it’s new
storage. It would be nice if the DA knew in which heap it was opened and could allocate the new
stuff there, and it’s easy enough to do, so here is what you need to know to do it.

#248: DAs & Drivers in Need of (2 Good) Time 1of4

Switching from the current heap to the “preferred” heap is fairly simple. When you feel the need to
allocate memory or create a window during accRun, first save the current heap zone with
_GetZone. Now, get the handle to the actual driver for the DA. You can do this by looking at
the dCt1Driver offset of the DAs device control entry (DCE). The DCE is always in register 1
when a control call to the DA is made. Use _HandleZone on the handle to the DAs driver to
give you a pointer to the heap in which the driver resides. Pass that value to SetZone. Once
you have switched in the correct heap, do whatever memory allocation or window creation you
need, and then make sure to set the current zone back to the saved zone with _SetZone.

The following short routine, borrowed, in part, from an MPW sample DA, shows one way to set
up the correct zone.

pascal short DRVRControl (CntrlParam *ct1lPB, DCt1Ptr dCtl)
{

extern void doCt1Event (};

extern void doPeriodic{);

THz driverZone;
THz savedZone;

/*

* The current grafPort is saved & restored by the Desk Manager

*/

switch (ctlPB->csCode) {

case ACCEVENT: /* accEvent */
HLock (dCt1->dCt1Storage) ; /* Lock handle since it will
be dereferenced */
doCtlEvent { *((EventRecord **) &ct1PB->csParam{0]),
{Globals *} (*dCtl->dCtlStorage));

HUnleck (dCt1->dCt1Storage) ;

break;
i
* Hey! Look here!
*/
case ACCRUN: /* periodicEvent */
savedZone = GetZone(); /* save a pointer to the current heap =*/
driverZone = HandleZone {dCt1->dCtlDriver); /* get the heap our driver
resides in */
SetZone(driverZone); /* use that as the current heap */
doPeriodic{dCtl); /* go do your periodic stuff */
SetZone(savedZone); /* restore the old heap */
break;
default:
break;
}
return 0;

}

One note of caution: Watch out for changes in the resource chain when in accRun, as it may not
be what you expect when MultiFinder is active.

#248: DAs & Drivers in Need of (a Good) Time 2 of 4

“Houston, We’ve Got a Re-Entry Problem”

Displaying an alert or other modal dialog box is a common occurrence in Macintosh programming,
even in DAs. But since DAs are not applications, modal dialog boxes pose other problems when
displayed under MultiFinder. This problem is reentrancy. If your DA or driver asks for periodic
time, it continues to receive it when it display a modal dialog box. Bummer. Your modai dialog
routine might even be called again, and again, and again, and again, and you get the idea. This
problem occurs because ModalDialog calls the SystemTask trap, which in turn calls
drivers which asked for time, including yours. There is no internal check by the System for this
possible problem, so it’s up to you and your driver to be prepared.

We realize that some DAs and drivers expect, and depend upon, this functionality. We’re just
taking this opportunity to inform the rest of you that this is a situation about which you shouid be
aware.

An easy way to avoid this issue is to simply tell the Device Manager not to call your DA when you
display an alert or other modal dialog box. Remember that dNeedTime bit you set when you
opened your DA so you'd get time? Just clear it before yourcallto Alert or ModalDialog.
As long as the bit is clear, your DA does not receive any periodic time. Remember to reset it once
you are done with your _Alert or_ModalDialog trap call.

The BitClr and _BitSet Toolbox utilities are a mite on the brain-damaged side, and the bits
are the reverse of conventional 680x0 numbering (numbering starts from the high-order bit instead
of the low-order bit). This difference necessitates a calculation for figuring out the correct bit as
shown in the following example: (I think whoever wrote these Toolbox utilities did this just to see
if anyone was paying attention.)

Pascal
BitClr{@dce‘.dCtlFlags, 2); { clear bit 5/dNeedTime bit, IM I-471 }
BitSet(@dce“.dCtlFlags. 2); { set bit 5/dNeedTime bit. IM I-471 }

or the kind of more efficient, but less efficient than C:

CONST

dNeedTime = 52000; { Bit 5 of high-order byte of word }

dce”.dCt1Flags := BAND (dce*.dCt 1Flags, BNOT {dNeedTime)) ; { clear bit 5/dNeedTime bit.)
dece”.dCt1lFlags := BOR (dce”.dCt1Flags, dNeedTime); { set bit 5/dNeedTime bit. }

#248: DAs & Drivers in Need of (a Good) Time 3of4

—

C

BitClr(&dce—)dCtlFlags, 2); /* clear bit 5/dNeedTime bit. IM I-471
BitSet (édce->dCtlFlags, 2}: /* set bit 5/dNeedTime bit. IM I-471 */

or the somewhat more efficient:

t#define dNeedTime 0x2000 /* Bit 5 of high-order byte of word */
dce->dCt1Flags &= ~dNeedTime; /* clear bit 5/dNeedTime bit. *x/
dee->dCt1Flags = dNeedTime; /* set bit 5/dNeedTime bit, >/

One More Thing...

We cannot overemphasize our viewpoint that if you are writing a DA and the result looks and acts
more like an application, then write an application instead and save us all a [ot of headaches.

Further Reference:

* Inside Macintosh, Volume II, The Memory Manager
* Technical Note #180, MultiFinder Miscellanea

#248: DAs & Drivers in Need of (a Good) Time 4 of 4

Macintosh 2
Technical Notes .

Developer Technical Support

#249: Opening the Serial Driver

Revised by: Sriram Subramanian October 1989
Written by: Sriram Subramanian August 1989

This Technical Note describes the recommended, safe, and compatible way to open the Macintosh
serial driver, and it explains why you should no lon ger check for port availability.
Changes since August 1989: Corrected syntax errors in the sample code.

Starting with the 128K ROM, we recommend that applications do not check the low-memory
globals SPConfig, PortAUse, and PortBUse before opening the serial driver. It is no longer
the application’s responsibility to test for the availability of the serial ports. When running
AppleTalk Phase 2, it is now possible to use the printer port for asynchronous serial
communication while AppleTalk is active and using an alternate connection, such as EtherTalk or
TokenTalk.

The serial driver automatically verifies that the serial port is correctly configured and free for an
asynchronous driver; if it is not correctly configured or free, the serial driver returns either the
result code portNotCf or port InUse. The serial driver already has all the code built into it for
testing the availability of the serial ports before trying to complete the Open call. Therefore, since
all of the required checks are made inside the driver itself, we recommend that a simple
OpenDriver call be made when you need to use a seriat port.

By using just the OpenDriver call to the serial driver, you ensure that your code is both
user-friendly and compatible with future versions of the System Software.

Pascal

result := OpenDriver{'.AQCut', acutRefNum); { Check result codes in a real application.)
result ;= OpenDriver('.AIn',ainRefNum); { See failure mechanism in Sample Code. }
C

result = OpenDriver ("\p.AOut®, tacutRefNum); /* Check result codes in a real application,*/
result = OpenDriver ("\p.AIn",sainRefNum): /* See fallure mechanism in Sample Code, */

If you must maintain compatibility with the 64K ROMs, call _SysEnvirons, then either call
RAMSDOpen for the 64K ROM machines or OpenDriver for the others.

Further Reference:

Inside Macintosh, Volume 11-249, The Serial Driver

Inside Macintosh, Volume IV-225, The Serial Driver
Technical Note #129, _SysEnvirons: System 6.0 and Beyond
DTS Q & A Stack

#249: Opening the Serial Driver tofl

Macintosh ’
Technical Notes .

Developer Technical Support

#252: Plotting Small Icons

Revised by: James Beninghaus October 1989
Writtenby: James Beninghaus & Dennis Hescox August 1989

This Technical Note discusses the * STCN" resource format and how to plotoneinaGrafPort.
Changes since August 1989: Corrected errors in the Pascal code and spruced up the rest.

Introduction

Apple first introduced the 'SICN' resource so that the Script Manager could represent which
country specific resources are installed in the system by displaying a small icon in the upper right
comer of the menu bar. You can pass a 'SICN' resource to the Notification Manager or Menu
Manager, and they will draw it for you automatically—you should continue to let them do so.
However, if you want to draw a small icon in your application’s window, then this Note can help.

What does a *SICN' look like? Followingisa 'SICN’ representation of a dogcow to help
answer this question:
:
T 8 “ezomgt

e]]
K] .
'l
. a]
5 = B =
ﬁ EES [T T[]
'SICN! FatBits

There is reason to believe that this representation is actually a baby dogcow. Due to the protective
nature of parent dogcows, young dogcows are rarely seen. This one was spotted during a DTS
meeting after it drew attention to itself by crying “moo! woof!”. (Note that this dogcow said “moo!
woof!” because it was immature; adult dogcows naturally say, “Moof!”.)

#252: Plotting Small Icons 1of5

'SICN' Resource

A 'SICN' resource contains any number of small icon bit images. Each small iconina 'SICN’
list describes a 16 by 16 pixel image and requires 32 bytes of storage. Like an ' TCN# ' resource,
there is no count of the number of icons stored in a 'SICN'. The following 'SICN' resource, in
MPW Rez format, contains two small icons:

resource 'SICN' (1984, "clarus"™) {
{ /* array: 2 elements */

500 48 00 B4 DO B4 40 52 CO 41 AQ Bl 9F BE 8F 1s"
5"40 18 40 18 47 88 48 48 48 48 44 44 3C iC oc gon,

$"00 48 00 FC 00 FC 40 7E CO 7F EO FF FF FE FF F8"
$"T7F F8 TF F8 7F F8 78 78 78 78 IC 7¢ 3C 3c oo oon

H

The Right Tools for the Job

The Macintosh Toolbox interfaces do not describe all the necessary data structures needed to work
with ' SICN' resources. As shown in the following example, defining the 'SICN® type as an
array of 16 short integers and the handles and pointers to this array type make life much easier.

Pascal

TYPE
SICN = ARRAY(0 .., 15] of INTEGER;
SICNList = ARRAY[O .. 0] of SICN;
SICNPtr = “SICNList;

SICNHand = ~“SICNPtr;

C
typedef short SICN[1l6];
typedef SICN *SICNList;

typedef SICNList *SICNHand;

The Missing Count

The 'SICN' resource does not provide a count to indicate the number of small icons contained
within; however, you can easily determine this number by dividing the total size of the resource by
the size of a single small icon.

#252: Plotting Small Icons 20of5

Pascal

CONST
mySICN = 1984;
VAR
theSICN : SICNHand;
theSize : LONGINT;
theCount : LONGINT;
thelndex : LONGINT;

theSICN := SICNHand {GetResource('SICN’, mySICN)) ;
IF {theSICN <> NIL) THEN BEGIN
theSize := GetHandleSize{Handle (theSICN));
theCount := theSize DIV sizeof(SICN);
END;

C

#define mySICN 1984

SICNHand theSICN;

long theSize;
long theCount;
long thelndex;

theSICN = (SICNHand) GetResource('SICN', mySTCN) ;
if (theSICN) {
theSize = GetHandleSize((Handle)theSICN);
theCount = theSize / sizeof (SICN);

The Plot 'SICN's

The example procedure Plot SICN draws one small icon of a ' SICN' resource. It takes the
handle from theSICN and the position in the list from the Index within the rectangle t heRect
of the current GrafPort.

Following is an example call to P 1ot SICN which plots all the small icons in a resource into the
samne rectangle:

Pascal

SetRect (theRect, 0, 0, 16, 16);
FOR thelndex :~= 0 TO theCount-1 DO
PlotSICN{(theRect, theSICN, thelndex);

C

SetRect (&étheRect, 0, 0, 16, 16);
for (thelndex = 0; theIndex < theCount ; ++thelndex)
PlotSICN{&theRect, theSICN, thelndex);

Because PIOtSICN uses _CopyBits and _CopyBits can move memory, you should lock the
handle to the 'SICN' once the resource is loaded. Notice that the P1ot SICN procedure
dereferences the ' SICN' handle, adds an offset, and copies the resulting value. If the * SICN®
list moves in memory at this time, the bitmap’s baseAddr is useless.

#252: Plouting Small Icons 3of5

To play it safe, P1Lot SICN saves a copy of the master pointer flags associated with the relocatable
block, locks the block with a call to _HLock, and restores the flags after calling CopyBits.
You should never examine, set, or clear these flags directly; you should always use the routines
which are provided by the Memory Manager and Resource Manager. Note that it is not necessary
to check the value of the flag after getting it.

Pascal

PROCEDURE PlotSICN({theRect: Rect; theSICN: SICNHand; theIndex :; INTEGER):
VAR

state : SignedByte; { we want a chance to restore original state }
srcBits : BitMap: { built up around 'SICN' data so we can _CopyBits }
BEGIN
{ check the index for a valid value }
IF {GetHandleSlize (Handle(theSICN)) DIV sizeof(SICN)) > thelndex THEN
BEGIN
{ store the resource's current locked/unlocked condition)
state := HGetState{Handle{theSICN});:
[lock the resource so it won't move during the _CopyBits call }
HLock (Handle({theSICN));
{ set up the small icon's bitmap)
{$SPUSH}
{SR-} { turn off range checking }
srcBits,.baseAddr := Ptr(@theSICN~~[thelndex]):;
{SPOP)
srcBits.rowBytes := 2;
SetRect (srcBits.bounds, 0, 0, 16, 16);
{ draw the small icon in the current grafport }
CopyBits (srcBlts,thePort”,portBits, srcBits.bounds, theRect, srcCopy, NIL) ;
{ restore the resource's locked/unlocked condition }
HSetState (Handle {theSICN), state):
END;
END;

#252: Plotting Small fcons 4 of 5

C

void PlotSICN (Rect *theRect, SICNHand theSICN, long thelndex) {
auto char state; /* saves original flags of *SICN' handle */
auto BitMap sreBits; /* built up around 'SICN? data so we can _CopyBits */

/* check the index for a valid value */
if ((GetHandleSize{(Handle (theSICN)) / sizeof (SICN)) > theIndex) {

/* store the rescurce's current locked/unlocked condition */
state = HGetState((Handle)theSICN);

/* lock the resource so it won't move during the CopyBits call */
HLock ((Handle) theSICN)

/* set up the small icon's bitmap */
srcBits.baseAddr = (Ptr) (*theSICN) [theIndex];
srcBits.rowBytes = 2;

SetRect {&srcBits.bounds, 0, 0, 16, 16j;

/* draw the small icon in the current grafport =*/
CopyBits(cschits,&(*qd.thePort).portBits,ischits.bounds,theRect,srcCopy.nil):

/* restore the resource's locked/unlocked condition */
HSetState ((Handle) theSICN, state};

That Was Easy

Now that you’ve seen it done, it looks pretty easy. With minor modifications, some of the
techniques in this Note could also be used to plot a bitmap of any dimension.

Further Reference:

* Inside Macintosh, Volume I, QuickDraw

* Inside Macintosh, Volume I, Toolbox Utilities

* Inside Macintosh, Volume IV, The Memory Manager

* Technical Note #41, Drawing Into an Off-Screen BitMap
* . Technical Note #55, Drawing Icons

#252: Plotting Small Icons 50f5

Macintosh £
Technical Notes .

Developer Technical Support

#253: 'SICN' Tired of Large Icons in Menus?

Revised by: Dennis Hescox October 1989
Written by: Dennis Hescox August 1989

This Technical Note describes a new facility of the Menu Manager which allows you to add
reduced icons and small icons to your menus.
Changes since August 1989: Corrected references to SetItemCmd from Set ItmCmd.

Since the release of MultiFinder, you may have noticed the appearance of small icons ('SICN')in
the menus of some System Software. At that time, the Menu Manager was modified to allow the
capability of showing both *'SICN' resources and ' ICON * resources reduced to 'SICN' size.

How to Add Less
To add one of the smaller icons to a menu item with Rez or ResEdit, do the following:
Reduced Icon

+ Place a value of $1D into the cmdChr field of the menuItem.
* Place the resource ID number of the ' ICON' to use, minus 256, into the
itemIcon field of the menuItem,

Small Icon

* Place a value of $1E into the cmdChr field of the menultem.
* Place the resource ID number of the ° SICN' to use, minus 256, into the
itemIcon field of the menuItemn.

In the ResEdit 'MENU* template, the cmdChr field is called “Key equiv” and the itemIcon field
is called “Icon#.”

For setting or changing the menu from within your program, use the following:

SetItemCmd (theMenu, item, $10} { mark menu item as having a reduced icon }
SetItemlcon(theMenu, item, icon)

SetItemCmd (theMenu, item, $1E) { mark menu item as having a SICN }
SetItemIcon{theMenu, item, icon}

#253: 'SICN' Tired of Large Icons in Menus? 1of2

Note that the resource ID that you indicate to the Menu Manager is 256 less than the icon’s real
resource ID. This means that you can only use icons starting with resource iD of 257 (remember
that a zero indicates no icon). Figure ! illustrates a menu with ' STCN ' resources in the first three
items, a normal ' ICON' in the fourth item, and a reduced version of the normal ' ICON' in the

fifth item.
#j Remember

& Screen
O Dumps

lllith W

[[E Menus?

Figure 1-Menu Containing a 'SICN', an 'ICON', and a Reduced 'ICON'

You Win Some; You Lose Some

Note that this new facility does not come for free. A menu item that contains a 'SICN'ora
reduced icon cannot also have a command key equivalent. Because the addition of a smaller icon
must be somehow recorded into the existing menu record, the cmdChr field of your menu item
that used to contain the command key equivalent is now used to indicate both the command key to
use or the use of a smaller icon.

Further Reference:

* Inside Macintosh, Volume I, The Menu Manager
* Inside Macintosh Volume V, The Menu Manager

#253: 'SICN Tired of Large Icons in Menus? 20of2

Macintosh z
Technical Notes .

Developer Technical Support

#254: Macintosh Portable PDS Development

Written by: Dennis Hescox October 1989

The Technical Note describes the unique aspects of the Macintosh Portable Processor Direct Slot
(PDS), including the severe limitations in its use.

particular, two of these goals which limit the use of the PDS are that the unit shall have a lbng

(cight hour) battery operation life and that the unit shall meet all FCC regulations, including the

?Eﬂity to operate on commercial aircraft (provided that the FCC doesn’t bar all portables in the near
ture).

I’ve Got a Bad Feeling About This

Because of these design goals and the subsequent limitations on the use of the PDS, you must
severely limit your card design for the Macintosh Portable.

The first and foremost limitation is that the PDS has no power budget for your card. Seeing
that there are +12v and +5v connections on the PDS connector, we all realize that you could draw
some power directly from the Macintosh Portable. Please don’t do it. Instead, you should add
your own power supply (i.e., battery) to your board, thus controlling your own destiny (or at least
the destiny of your PDS board) and ensuring that the Macintosh Portable has the longest battery life
of any portable on the market. You are the best Judge as to whether or not your board needs to run
continuously when the Macintosh Portable is in sleep mode, therefore requiring a long current life.
You might find that the functionality of your board is only optimal when the Macintosh Portable is
in full-operating mode (or powered by an external source), and in this case, you could conserve its
current de. .

For those of you who are convinced that your product is so important that your users will overlook
a 50% reduction in their system operating time, Table 1 shows a worst-case power budget that
could apply.

Power Supply Operating state Sleep State

+5 V, always on 30 mA maximum 1 mA maximum
+5 V, switched« 0 mA maximum
+12V 25 mA maximum 0 mA maximum

* The 50 mA maximum applies to the loads of the
switched and unswitched +5 V supplies.

Table 1-Worst-Case Power Budget

#254: Macintosh Portable PDS Development Lof§

The second limitation is that to meet FCC limits on radio frequency emissions, no connector or
cable attached to an expansion card can penetrate the case of the Macintosh Portable,

So Why Have a PDS Connector at AH?

The decision to include the PDS connector is a recognition that we can’t know it all. Although it
may seem that next to no power availability and absolutely no custom cables to the outside world
would block all possible products, providing the expansion connector allows for that spark of
genius for which developers are known and the unanticipated product which usually results. So, if
after all these dire wamnings you still want to proceed, following are the available details (at least
until Designing Cards and Drivers for the Macintosh can be updated).

Hang On
The PDS in the Macintosh Portable provides the microprocessor address, control, data, clock

power, and Macintosh Portable-specific lines for your expansion card’s use. Table 2 lists these
signals, while Table 3 lists their descriptions.

Pin Number Row A Row B Row C
1 GND GND GND
2 +5V +5V +5V
3 +5V +5V +5V
4 +5V +5V +5V
5 /DELAY.CS /SYS.PWR /VPA
6 /VMA /BR /BGACK
7 /BG /DTACK R/W
8 /LDS /LDS fAS
9 GND +5/0V Al
10 A2 A3 Ad
11 AS A6 A7
12 A8 A9 Al0
13 All Al2 Al3
14 Al4 Al5 Al6
15 Al7 Al8 SLOT.A19
16 ACQO ACC1 nc
17 nc SLOT.CSO SLOT.CS1
18 /SLOT.UW SLOT.QOE /SLOT.LW
19 SLOT.A20 +12V DO
20 D1 D2 D3
21 D4 D5 D6
22 D7 D8 Do
23 D10 D11 D12
24 D13 D14 D15
25 +5/3.7V +5V GND
26 Al9 A20 A21
27 A22 A23 E
28 FCO FC1 FC2
29 /TPLO /IPL1 TPL2
30 /BERR /EXTDTACK
/SYS.RST
31 GND 16M GND
32 GND GND GND

Table 2-Macintosh Portable 68000 Direct Slot Expansion Connector Pinouts

#254: Macintosh Portable PDS Development

20f5

Mnemonic Description

nc No connection

GND Logic ground

DO-D15 Unbuffered data bus, bits 0 through 15

Al-A23 Unbuffered address bus, bits 1 through 23

16M 16 MHz clock

/EXT.DTACK External data transfer acknowledge. This signal is an
input to the processor logic glue that allows for external
generation of the /DTACK signal.

E E (enable) clock

/BERR Bus error signal generated whenever /AS remains low
for more than about 250 ms

/IPLO-/IPL2 Input priority level lines 0 through 2,

/RESET Initiates a system reset

MALT Indicates that the processor should suspend bus
activity. /HALT and /RESET are tied together but can
be internally disconnected for independent action

/AS Address strobe

/UDS Upper data strobe

DS Lower data strobe

R/W Defines bus transfer as read or write signal

/DTACK Data transfer acknowledge

/BG Bus grant

/BGACK Bus grant acknowledge

/BR Bus request

/VMA Valid memory access

/VPA Valid peripheral address

FCO-FC2 Function code lines 0 through 2

/SLOT.CS0-1 Reserved

SLOT.OE Reserved

/SLOT.INS Reserved

SLOT.A19-20 Reserved

/SLOT.UW Reserved

/SLOT.LW Reserved

Table 3-Functional Description of the Macintosh Portable PDS Signals

The signals listed in Tables 2 and 3 are presented to your PDS card through a Euro-DIN 96-pin
socket connector on the main logic board. If components are to be mounted on the top side of the
card, the plug connector should have compliant pins (i.e., force fit insertion) rather than
solder-type pins for connection to the expansion card,

#254: Macintosh Portable PDS Development 3of5

Currently, you can order these Euro-DIN 96-pin connectors (which meet Apple specifications)
from: AMP Incorporated, Harrisburg, PA 17105.

Disclaimer: This listing for AMP Incorporated neither implies nor constitutes an

endorsement by Apple Computer, Inc. If your company supplies these
connectors and you would like to be listed, contact us at the address in

Technical Note #0,

95.0 (3.74) max

90.0 (3.543) | 03
b H oo
i | g B OEEEE AR ~

- M\\rowa

2 holes @ } 85.29 (3.385 —\row b
2.85(.112)

(.204) (452) 3

508
(-200)_., P‘t 254
I 2.54(.100) 52 1150 (.100)
._1_mm.

2.9
- (.114)
Three-row pin connector Dimensions are
96 contact positions in millimeters
2.54 mm (.100) spacing pins with inches in
Gold plated, 20 microinches, over nickel plate parentheses.

Figure 1-96-Pin Plug Connector

Due to the limited space within the Macintosh Portable’s case, your card is limited to the size

indicated in Figure 2. We highly recommend the use of CMOS circuits to reduce the total power
necessary for your card’s operation.

#254: Macintosh Portable PDS Development 4 0of 5

10.00 max component height ——pw, ~ag—

F— 107.00 -
-
77222}
7 L Ll
P IITITIZZLEEL 4 N
A 4
/ Y
[
7 /
/1 % —] g
] [/ 1.70
4 2
7 2
—»11"%— 6.00 ESD Grounding Strip. 5
/ No components this area both ; 71.00
/] sides of PCB %
5100] %
7 /
4 7
/ Pin 1 “
td
|
* 10.00 96 Pin vertical Euro-DIN, 3-row Connector. '
—_—{ 7.00 pel— 5.00 max component height (solder side) ——! Leg-

Dimensions are in Millimeters.
Figure 2-PDS Expansion Card Dimensions

Further Reference:

* Designing Cards and Drivers for the Macintosh
* Guide to the Macintosh Family Hardware

#254: Macintosh Portable PDS Development 50f5

Macintosh s
Technical Notes .

Developer Technical Support

#255: Macintosh Portable ROM Expansion
Writtenby: Dennis Hescox October 1989

This Technical Note explains the practice of and theory behind compatible use of the expansion
ROM in the Macintosh Portable.

Due to the unique nature of the Macintosh Portable, developers now have the ability to add ROM to
the Macintosh. To provide for compatible shared use of this ROM space with Apple and other
developers, this Note describes the feature and suggests methods of shared implementation.

Address Space

The Macintosh Portable contains 256K of processor ROM, which is fundamentally the same as the
ROM in the Macintosh SE. This ROM is located at the low end of a | MB ROM space. With an
expansion card, one can either completely replace the 1 MB ROM or simply add an additional 4
MB of ROM. The original 1 MB of address space is reserved for use by Apple, but the
additional 4 MB address space is available for third-party developers.

Apple reserved ROM space is located from $90 0000 through $9F FFFF. You can replace this
ROM space with an expansion board, thus overriding these ROMs; however, if you override these
ROMs your machine will no longer work with most applications. This ability to override the
original ROMs is intended for Apple in the event that a ROM upgrade is ever necessary for the
Macintosh Portable. Developers should use the 4 MB ROM address space from $A0 0000 through
$DF FFFF, which is illustrated in Figure 1, for expansion.

Since Apple could provide a ROM upgrade (on a ROM expansion board), we recommend that
developers use a standard 32-pin DIP socketed ROM part for any expansion board. Following this
recommendation ensures that the user will never have to choose between an Apple ROM upgrade
and a third-party expansion board, since Apple could provide sockets for third-party ROMs if we
were to produce such an upgrade.

#255: Macintosh Portable Rom Expansion 10of7

—

$100 0000
$F0 0000 |-
$EO 0000
$D0 0000
$C0 0000
$BO0 0000
$A0 0000
$90 0000
$80 0000
$70 0000
$60 0000
$50 0000
$40 0000
$30 0000
$20 0000
$10 0000
$00 0000

Reserved Hardware

System ROM

RAM

Expansion

RAM/ROM Overlay

Figure 1-Macintosh Portable Memory Map

Expansion ROM Board

If Apple were to produce an expansion ROM board for an upgrade, it would have the following
characteristics. Side one would contain four 32-pin ROM sockets compatible with 128K x 8 bit or
512K x 8 bit ROMs, a dip switch for choosing between 128K or 512K socket address sizes, and
appropriate decoupling capacitors. Side two would contain Apple’s expansion ROMs and any
additional circuitry. This design implies that developers would be able to use at most either 512K
or 2 MB of the total 4 MB expansion space.

When designing your own expansion board, remember that it must contain circuitry for decoding,
controlling, and buffering, and it should use CMOS, since the Macintosh Portable restricts ROM
expansion boards to a maximum of 25ma. The number of wait states inserted depends upon the
DTACK generated by your board, which connects to the Macintosh Portable through a single
50-pin connector (slot). The machine provides all of the appropriate signals (address bus, data
bus, and control) to the expansion slot, where they are decoded into chip selects and routed to
address and data buffers. These signal names and descriptions are illustrated in Figure 2 and
described in Table 1. It is also important to buffer the address and data buffers to reduce capacitive
loading,

#255: Macintosh Portable Rom Expansion 2 of 7

+5V 4+ 1 24 Al
A2 4+ 3 44 A3
Ad 4+ 5 64 AS
A6 + 7 84 A7
A8 1+ 9 104 A9
Al0 4 11 124 All
Al2 4+ 13 144 A13
Al4 + 15 164 AlS
Al6 4 17 184 Al7
Al8 + 19 20+ Al9
A20 21 221 A2l
A22 23 241 A23
GND 25 264 GND

/DTACK + 27 281 /AS

/ROM_CS 29 304 16Mhz_Clock
/EXT_DTACK 31 32+ /DELAY_CS
DO 33 344 DI
D2 + 35 36+ D3
D4 1 37 384 DS
D6 + 39 404 D7
D8 - 41 421 D9
D10 -{- 43 444 DI11
D12 + 45 461 D13
D14 { 47 48+ D15
+5V + 49 504 +5V

Figure 2-Internal ROM Expansion Connector Signals

Pin Number Signal Name Signal Description

1 +5V Voo

2-24 Al-23 Unbuffered 68HC000 address
signals A1-23

25-26 GND Logic Ground

27 /DTACK /DTACK input to 68HC000

28 /AS 68HCO000 address strobe signal

29 /ROM_CS Permanent ROM chip select
signal. Selects in range $90 0000
through $9F FFFF.

30 16 Mhz_clock 16 Mhz system clock.

31 /EXT_DTACK External IDTACK
signal that disables main system
/DTACK

32 /DELAY_CS This signal is generated
by the addressing PAL and is used to
put the ROM board into the idle mode
by inserting multiple wait states.

33-48 DO-15 68HC000 unbuffered data
signals DO-15

49-50 +5V Veeo

Table 1-Internal ROM Expansion Connector Signal Descriptions

#255: Macintosh Portable Rom Expansion 3of7

= = ~ o
& 8 S 3
5 9
2 ° SeeDetail A I
(3x) 3.38 [.133] 2777 68.58 [2.700)
Tooling Holes 7 /]
- 60.42 [2.379]
58.55 [2.305) :j
51.94 {2.045] Detail A :5
]
6.00 [.236] g
(3x) 3.00 [.118] — f
ESD Grounding Strip ;
both sides of PCB ’//
/‘
No components or traces. ,//
) This area for grounding to
7:62 [.300] rear cover. Both Sides. 9 537 {211]
234 [.092) © L AL
- 1
0 ! 50-Pin Connector
-10.11 [-.398]
-27.28 [-1.074] 0 68.18 [2.684)

Dimensions are in Millimeters [Inches}
Figure 3-Internal ROM Expansion Board Guidelines

Software Standards

For the purposes of expansion ROM, Apple has introduced Electronic Disks (EDisks), which
appear to the user as very fast, silent disk drives. The EDisk driver supports EDisks, which use
RAM or ROM as their storage media.

ROM EDisks, which can be produced by third parties, are connected to the system using the
internal ROM expansion slot. The 4 MB address space allocated for this type of expansion
supports any number of ROM EDisks, as long as they start on a 64K boundary (their size may
exceed 64K). ROM EDisks behave like RAM EDisks, except that they are read-only and cannot be

resized,

#255: Macintosh Portable Rom Expansion 4 of 7

The EDisk Driver

The EDisk driver provides a system interface to EDisks similar to that provided by the Sony and
SCSI disk drivers. It supports 512 byte block I/O operations and does not support file system
tags. The EDisk driverisa ROM 'DRVR' resource with an ID of 48, Re fNum of -49, and driver
name of “ EDisk”. Since it is a disk driver, it also creates a Drive Queue Element for each EDisk.
Information on how these driver calls apply to the Sony driver appear in the Disk Driver chapters
of Inside Macintosh, Volumes II, IV, & V.

EDisk Implementation Details

The remainder of this section describes some of the implementation details, data formats, and
algfgll'(thms used by the EDisk driver that may be useful for developers who want to produce ROM
EDisks.

Data Checksumming

To provide better data integrity, the EDisk driver supports checksumming of each data block,

which is computed when a write is performed to a block and checked on every read operation. It

computes a 32-bit checksum for each 512-byte block. This calculation is performed by adding

each longword in the block to a running longword checksum, which is initially zero, and is rotated

alﬁﬂ by one bit before each longword is added. The following assembly code demonstrates this
gorithm:

Lea TheBlock, a0 # A0 1s pointer to the block to checksum

Moveq.lL #0,D0 ; DO is the checksum, initially zero

Moveq.L #(512/4)~-1,D1 ; loop counter for 1 block (4 bytes per iteration)
4Loop Rol.L #1,.D0 ; rotate the checksum

Add.L (AO)+,DO ; add the data to the running checksum

Dbra D1, @Loop i loop through each longword in the block

Internal ROM EDisk Details

When the EDisk driver is opened, it searches the address range from the base of the system ROM
to $00EQ 0000 for internal ROM EDisks. An internal ROM EDisk must begin with an EDisk
header block, which must start on a 64K boundary (but may be any size). If a valid header block
is found, it is compared to all other known headers, and if it is identical to another, it is ignored to
eliminate duplicates caused by address wrapping. If the header block is unique, the EDisk driver
supports it and creates a drive queue entry for it. The driver can support any number of internal
ROM EDisks, and it is limited only by the address space allocated for ROM.

EDisk Header Format

There is 2 512-byte header block associated with ROM EDisks. This header describes the layout of
the EDisk and uniquely identifies it. The general format of the header block is described below.
The EDisk header marks the beginning of an EDisk, and it should occur at the beginning of the
ROM space that is used for EDisk storage (i.c., starting at the first byte of a 64K ROM block).

EDiskHeader Record 0, increment ; layout of the EDisk signature block
HdrScratch Ds.B 128 ¢ scratch space for r/w testing and vendor info
HdrBlockSize DS.W 1 : size of header block {512 bytes for version 1}
HdrVersion DS.W 1 : header version number (this is version 1)
HdrSignature DS.B 12 7 45 44 69 73 6B 20 47 61 72 79 20 44
HdrDeviceSize DS.L 1 i size of device, in bytes

HdrFormatTime DS.L 1 ; time when last formatted (pseudo unique ID)

#255: Macintosh Portable Rom Expansion 50f7

HdrFormatTicks DS.L
HdrCheckSumOff DS.L
HdrDataStartOff DS.L
HdrDataEndOff DS.L
HdrMediaIconOff DS.L
HdrDriveIconOff bS.L
HdrWhereStroff DS.L
HdrDrivelInfa DsS.L
DS.B
EDiskHeaderSize EQU
ENDR
HdrScratch
HdrBlockSize
HdrVersion
HdrSignature
HdrDeviceSize
HdrFormatTime
HdrFormatTicks
HdrCheckSumOf £
HdrDataStartOff
HdrDataEndOff

i ticks when last formatted (pseudo unique ID)

¢ offset tc the Checkesum table, if present

: offset to the first byte of data storage

; offset to the last byte+l of data storage

/ offset to the media Icon and Mask, if present

7 offset to the drive Icon and Mask, if present

/ offset to the Get Info Where: string, if present

; longword for Return Drive Info call, if present
12-* ; rest of block is reserved

; slze of EDisk header block

L B R e N " J SR

is a 128-byte field that is used for read and write testing on RAM
EDisks to determine if the memory is ROM or RAM. On ROM
EDisks, it should be filled in by the vendor with a unique string to
identify this version of the ROM EDisk (e.g., “Copyright 1989,
Apple Computer, Inc. System Tools 6.0.4 9/5/89™).

is a 2-byte field that indicates the size of the EDisk header block. The
size is currently 512 bytes.

is a 2-byte field that indicates the version of the EDisk header block.
The version number is currentty $0001.

is a 12-byte field that identifies a valid EDisk header block. The
signature must be setto 45 44 69 73 6B 20 47 61 72 79
20 44 in hexadecimal.

is a 4-byte field that indicates the size of the device in bytes, which
may be greater than the actual usable storage space. One might also
think of the device size as the offset (from the beginning of the header
block) of the last byte of the storage device.

is a 4-byte field that indicates the time of day when the EDisk was last
formatted. The EDisk driver updates this for RAM EDisks when the
format control call is made. This information may be useful for
uniquely identifying 2 RAM EDisk.

is a 4-byte field that indicates the value of the system global Ticks
when the EDisk was last formatted, which should be a unique
number. The EDisk driver updates this for RAM EDisks when the
format control call is made. This information may be useful for
uniquely identifying a RAM EDisk.

is a 4-byte field that is the offset (from the beginning of the header
block) of the checksum table, or zero if checksumming should not be
performed on this EDisk.

is a 4-byte field that is the offset (from the beginning of the header
block) of the first block of EDisk data.

is a 4-byte field that is the offset (from the beginning of the header
block) of the byte after the end of the last block of EDisk data.

#255: Macintosh Portable Rom Expansion 6 of 7

S

HdrMedialIconOfe is a 4-byte field that is the offset (from the beginning of the header
block) of the 128-byte icon and 128-byte icon mask, which represents
the disk media. An offset of zero indicates that the EDisk driver
should use the default media icon for this EDisk.

HdrDriveIconOff is a 4-byte field that is the offset (from the beginning of the header
block) of the 128-byte icon and 128-byte icon mask, which represents
the disk drive physical location. An offset of zero indicates that the
EDisk driver should use the default drive icon for this EDisk.

HdrWhereStrOff is a 4-byte field that is the offset (from the beginning of the header
block) of the Pascat string that describes the disk location for the
Finder Get Info command.” An offset of zero indicates that the EDisk
driver should use the default string for this EDisk.

HdrDriveInfo is a 4-byte field that should be returned by the drive information
control call. A value of zero indicates that the EDisk driver should use
the default drive info for this EDisk.

You should not override the default media or drive icons without first giving serious consideration

as to how a different icon will affect the user interface, What often appears to be a clever idea for a

cute icon usually turns out to be a source of frustration for the user when deciding what the item is
and where it is physically located.

Some Final Thoughts
Do Not Use More Space Than You Need

leave room (address space and empty chip sockets) in your ROM product to add other ROMs,
users will never have to make a choice between your product and another, unanticipated stroke of
genius.

Keep It Relocatable

Further Reference:

* Inside Macintosh, Volume I1, IV, & V, The Disk Driver

#255: Macintosh Portable Rom Expansion 7of 7

Macintosh £
Technical Notes ‘

Developer Technical Support

#256: Globals in Stand-Alone Code?

Writtenby: Keith Rollin & Keithen Hayenga October 1989
Special Guest appearance by Clarus the dogcow

This Technical Note, with the help of a special guest appearance, discusses the possibilities of
using global variables in stand-alone code, a task previously thou ght impossible.

Dear Clarus,

I was attending a social gathering of PC and UNIX programmers the other day, when some of my
friends starting discussing modular code segments. We were speaking of tossing off routines in
Pascal or C, linking, saving them off to disk, and then hammering out a shell application that
would load and execute them at run-time. Generally, a good time was had by all. The hostess was
particularly dazzling in her “Rude Dog” t-shirt.

However, recently something happened that changed my world. I was offered the chance to
program a Macintosh. I couldn’t believe it when I heard it, and, of course, I jumped at the chance.
I've been programming for many years, but have never used my abilities to their fullest potential.
Now I could realize all of that, and more.

So I loaded up on everything I needed: Macintosh Ilci, tons of RAM, all five volumes of Inside
Macintosh, every single Technical Note, and the paragon of development systems, MPW. In short
time I had my shell done, and I then set into programming the stand-alone modules that would be
loaded and executed at run-time. Very quickly, I ran into a problem.

Clarus, would you believe that MPW doesn’t allow global variables in stand-alone code? When I
try using them, the MPW linker gives me some sort of bogus message like, “Data Initialization
code is not being called. (Error 57).” 1 mean, other development systems manage it. Isn’t the
Macintosh supposed to be a totally flexible environment to program in?

What do I do? All of my PC friends are laughing at me.
—PC Weenie who'’s seen the Light of the Macintosh

Dear PC,

The problem with accessing global variables from stand-alone code resources is a very ancient and
time-honored one. It all hinges on the availability of the A5 register. This register is used to access
a 64K area of memory that contains an application’s jump table, global variables, and 32 rather
mysterious bytes called the application’s parameters. Because you are sharing the same heap as an
application when your stand-alone code resource is executed, the application is busy using AS and
won 't share it with you.

#256: Globals in Stand-Alone Code? 1 of 10

That’s the conflict. So what’s the solution? Reflection upon your youthful days should provide
you with an answer. As with any bully who won’t share his toys with you, you'll have to go and
take them away by force (an act that Clarus fully endorses). You need to write four routines:
MakeASWorld, SetA5World, RestoreASWorld, and DisposeAS5World. By calling these
routines at the right time, you can manage your own A5 world, separate from the host
application’s.

There are basically two types of stand-alone code that need globals: the kind that just needs some
because the programmer is too lazy to pass local variables as parameters to subroutines and the
kind that would like some sort of persistence in its data (i.c., the data hangs around in memory
across calls to the stand-alone code).

The first kind is easy. When the module is executed, it creates an AS world, does its thing, and
then tears down the AS world, making sure to restore the host application’s world. Such a routine
would look something like the following: '

TYPE
AS5RefType = Handle;

VAR
global: integer;

PROCEDURE Main;

VAR
ASRef: ASRefType;
oldAS; Ptr;

BEGIN
MakeASWorld {ASRef) ;
0ldA5S := SetASWorld(ASRef);

DoSomeStuff;

RestoreASWorld (o1dA5, ASRef);
DisposeASWorld (AS5Ref)
END;

The second kind is a little trickier and requires the cooperation of the host application. In this case,
what we need is the ability to pass back a reference to our global variable section so we can easily
restore it the next time we are invoked. In addition, we need some sort of indication of whether or
not this is the first or last time we are being called. This kind of routine could look like the

following:
PROCEDURE Main{code; integer; VAR ASRef: ASRefType):

VAR
o0ldA5; Ptr;

BEGIN
IF code = kFirstTime THEN
MakeASWorld (ASRef) ;
0ldAS5 ;= SetASWorld(ASRef):

DoScmeStuff;

RestoreASWorld(oldA5, ASRef);
IF code = kLastTime THEN
DisposeASWorld (ASRef)
END;

#256: Globals in Stand-Alone Code? 2 of 10

(Clarus’ PUG-faced neighbor would like to point out that you could also just check to see if the
ASRef being passed to you is NIL or not to determine if you need to create an A5 world.)

I'll bet you’re asking yourself right now, “OK, but what are these magic routines:
MakeASWorld, SetASWorld, RestoreA5World, and DisposeASWorld?” Well, Clarus

is glad you asked. These routines are very simple and are basically glue to the same routines that
Initialize the run-time environment for your application:

PROCEDURE MakeASWorld (VAR ASRef: ASRefType) ;

BEGIN
ASRef := NewHandle (AS5Size);
HLock {ASRef) :
ASInit (Ptr(ORD4 (ASRef”) + A5Size - 32));
HUnlock (ASRef) ;
END;

FUNCTION SetASWorld(ASRef: ASRefType) : Longint;

BEGIN

HLock (ASRef) ;

SetASWorld := SetAS5{Longint (ASRef") + AS5Size - 32);
END;

PROCEDURE RestoreASWorld{oldAS: Longint; ASRef: ASRefType);

BEGIN
IF Boolean(SetAS5{oldA5)) THEN;
HUnlock {ASRef) ;

END;

PROCEDURE DisposeASWorld(ASRef: ASRefType) ;

BEGIN
DisposHandle (ASRef) ;
END;

Like I said, very simple. Even Clarus’ evil twin brother, Oscar, could write them, They are really
only interfaces to the run-time procedures A5Size and A5Init. The interface to these routines is
as follows:

FUNCTION ASSize: Longint;
C; EXTERNAL;

PROCEDURE A5Init (myAS: Ptr);
C; EXTERNAL;

Ah, Clarus sees understanding in your eyes. “So these are the magic routines,” you are thinking,
“They are the magic incantations that allow me to stop beating my head up against Inside Macintosh
and let me get on with my work. Why didn’t Apple ever tell me about these before?” To tell the
truth, Clarus isn’t too sure.

A5S5ize finds out how much memory we need for our A5 world. This memory consists of two
parts: memory for our globals, and memory for our application parameters. ASInit takes a
pointer to our A5 globals and initializes them to their appropriate values. How these work takes a
little explaining.

When MPW’s linker links your program together, it has to somehow describe what your globals
area should look like. At the very least, it needs to keep track of how large your globals section

#256: Globals in Stand-Alone Code? 3 of 10

should be. At the very not-least, it needs to specify what values to put into your globals area.
Normally, this means setting everything to zero, but some crufty languages like C allow one to
specify preinitialized globals.

The linker creates a packed data block that describes all of this and sticks it into a segment called
3A5Init. Alsoincluded in this segment are the routines called by the MPW run-time initialization
package to act upon this data. A5Size and ASInit are two such routines. A5Size looks at the
field that holds the unpacked size of the data and returns it to the caller. A5In it is the beast
responsible for unpacking the data into your globals section.

Clarus would like to remind the gentle reader that in the Macintosh application environment, A5
points to the top of the globals section. This should explain the math that MakeASWorld is
performing. It gets a pointer to the start (i.e., bottom) of our globals area, adds the value returned
by A5Size, and subtracts 32 to compensate for the fact that A5Size includes room for the
application parameters. This action leaves us with a pointer to the memory location that divides the
global variables and application parameters (if your photographic memory is out of film, just look
at the picture on page II-19 of Inside Macintosh).

The propeller-heads over in the HyperCard group would like Clarus to remind you of something
else: if you are planning on making any callbacks to the host application (as HyperCard and Apple
File Exchange allow you to do), you have to temporarily restore that host’s A5. Otherwise, as said
propeller-heads put it, “you will be singing la bomba” when the host finds a different set of
variables hanging off of A5. Making sure that you call SetAS before and after your callbacks
cures this problem. A sample 'XCMD ' resource at the end of this Technical Note demonstrates
how to do this.

One last thing. The Greeks believed that there was something controiling the universe called “The
Natural Order of Things.” This philosophy stated that objects sought out their natural position in
the world. This explains why water rains from the sky (1o get back into the oceans) and why rocks
fall when you drop them (to get back to the ground).” This philosophy also explains why the new
A5 handling routines (A5Init, A5Size, and some others that they rely upon) normally go into a
"CODE ' segment called $ASInit; it’s because that’s where they naturally want to go. However,
we don’t want them there; we want them included in the same segment as our stand-alone code.

Fortunately, much in the same way you can pick up a rock and move it somewhere else (preferably
to your neighbor’s yard), you can move these routines into your code segment. This is done by
using the -sqg option of the MPW linker. For instance, in the following example, Clarus simply
moofed! the statement -sg Sorter, and everything was stuffed into the code resource named
Sorter.

Clarus hopes this helps.

A Note From the Management

The management of this publication would like to thank Clarus for providing the preceding
information. However, we felt it prudent to include the additional caveat, to wit, that the problems
associated with multisegmented code are not directly addressed with these techniques. The
routines for dealing with loading additional segments, ensuring that the resource map chain’s
integrity is maintained, and allocating space for a jump table have not, at this time, been
formulated. We, the management, hope to coerce Clarus into a caffeine-induced haze sufficient
enough to cover this topic in the future.

#256: Globals in Stand-Alone Code? 4 of 10

Full Source Sample

Following is the source code to a HyperCard ' XCMD ' that uses globals. This ' XCMD* accepts a
list of numbers, one at a time, then sorts them and passes them back to HyperCard. It can receive
any of four commands: kFirstTime, kAddEntry, kSortEntries, and kLast Time.
kFirstTime tells the *XCMD' to create an A% world and initialize it. kAddEnt ry includes a
number to be added to a global and persistent list of numbers to be sorted. kSortEnt ry instructs
the *XCMD* to sort the list of numbers and pass them back to HyperCard. Finally, kLastTime
is passed to the 'XCMD ' to tell it to shut down and dispose of any working memory it allocated.
Throughout all of this, calls are made back to HyperCard, showing how to temporarily swap
HyperCard’s A5 back in during the callback.

HyperCard Script

on mouselp

global A%
Sorter 1, "“AS" == Initialize that puppy
if the result is empty then
Sorter 3, AS, 2 -- Add some numbers to the list

Sorter 3, A5, €
Sorter 3, A5, 9
Sorter 3, AS, 12
Sorter 3, AS, 7

Sorter 4, AS -~ sort them and print them
Sorter 2, AS -- Dispose of our data

else
put the result

end if

end mouselUp

Make File (Sorter.make)

OBJECTS = Sorter.p.o

Sorter ff Sorter.make {OBJECTS)
Link -w -t XCMD -c kaar -rt XCMD=9989 g

-m ENTRYPOINT -sg Sorter d
{OBJECTS) 9
"{Libraries}HyperXLib.o" @
"{Libraries}Interface.o" @
*{Libraries}Runtime.o" 9
"{PLibraries)PasLib.o" &
-0 Sorter

Sorter.p.¢ f Sorter.make Sorter.p

Pascal Sorter.p

#256: Globals in Stand-Alone Code? 5 of 10

Pascal File (Sorter.p)

$2+}) { This allows the Linker to find "ENTRYPOINT* without our
having to put it in the INTERFACE section }

UNIT Fred;
INTERFACE

USES Types, Memory, OSUtils, HyperXCmd;

IMPLEMENTATION
TYPE
ASRefType = Handle;
LongArray = ARRAY [0..0]) OF Longint: { These define our list of entries }

LongPointer = ~LongArray;
LongHandle = “LongPointer;

CONST
kFirstTime = 1;
kLastTime = 2;
kAddEntry = 3;
kSortEntries = 4;

being called for the first time. Initialize. }
being called for the last time. Clean up. }

being called to add an entry to our list to sort. }
being called to sort and display our list. }

_— e e

kCommandIndex = 1; { Parameter 1 holds our command number, }

kASRefIndex = 2; { Parameter 2 holds our A5 world reference,)

KEntryIndex = 3; { Parameter 3 holds a number to add to our list,)
VAR

gHostAS: Longint; { The saved value of our host's {HyperCard's) AS. }

gNumOfEntries: Longint; { The number of entries in our list,)

gEntries: LongHandle; { Our list of entries. Gets expanded as needed. }

{ The following 2 functions are the cnes that set up and maintain our AS world. You must
Link with RunTime.o or CRunTime.o to call them. }

PROCEDURE ASInit{myAS: Ptr);
C: EXTERNAL;

FUNCTION ASSize: Longint;
C; EXTERNAL;

{ Forward reference to the main procedure. This is so we can jump to it from ENTRYPOINTE,
which represents the beginning of the XCMD, and is what HyperCard calls when it

calls us. }

PROCEDURE Sorter (paramPtr: XCmdPtr):
FORWARD;

PROCEDURE ENTRYPOINT (paramPtr: XCmdPtr);
BEGIN
Sorter (paramPtr) ;
END;

{ The next 4§ routines are our glue to the A5 maintenance routines,

MakeASWorld calls A55ize to get the amount of memory required for our AS world, It
then calls NewHandle to allocate that memory, and AS5Init to initialize it.

#256: Gilobals in Stand-Alone Code? 6 of 10

SetASWorld takes care of swapping in our A5 world. It locks down the handle tha
holds ocur A5 data, sets A5 to point to it, and returns the original AS.

RestoreASworld reverses the effects of SetASWorid. It restores A5 to the value
our host application needs, and unlocks our block of global data so as not
to fragment our host's heap.

DisposeASWorld is called when we are all done. It is in charge of disposing our
global data. Right now, this is just a call teo DisposHandle.

PROCEDURE MakeASWorld (VAR ASRef: ASRefType) ;

BEGIN
ASRef := NewHandle (A5Size):
HLock (ASRef) ;
AS5Init (Ptr(ORD4 (ASRef*) + A5Size - 32
HUnlock {(ASRef} ;
END;

FUNCTION SetASWorld{ASRef; ASRefType}: Longint;

BEGIN

HLock {ASRef) ;

SetASWorld := SetAS(Longint (ASRef”) + AS55ize - 32);
END;

PROCEDURE RestoreASWorld{oldAS: Longint; AS5Ref: ASRefType);

BEGIN
IF Boolean(SetAS5(oldAS5)) THEN;
HUnlock (ASRef) ;

END;

PROCEDURE DisposeASWorld(ASRef: ASRefType) ;

BEGIN
DisposHandle (ASRef) ;
END;

{ Utility routines for using the HyperCard callbacks. There are some functions
that we need to perform many times, or would like to encapsulate into little
routines for clarity;

ValueOfExpression - given an index from 1 to 16, this evaluates the expression
of that parameter. This is used to scoop out the value of the command
selector, our AS pointer, and the value of the number we are to stick
inte our list of numbers to sort.

LongToZero - Convert a LONGINT into a C (zero delimited) string. Returns a
handle that contalns that string.

SetGlobalAt - given the index to one of the 16 parameters and a LONGINT, this
routines sets the global found in that parameter to the LONGINT.

FUNCTION ValueOfExpression(paramPtr: XCmdPtr: index: integer): Longint;
VAR

tempStr: Str255;
tempHandle: Handle;

t

#256: Globals in Standi-Alone Code?

7 of 10

BEGIN
ZeroToPas(paramPtr, paramPtr”.params[index]”, tempStr);
templandle := EvalExpr{paramPtr, lempStr);

ZeroToPas (paramPtr, tempHandle®, tempStr);
DisposHandle (tempHandle) ;
ValueOfExpression := StrToleng (paramPtr, tempStr):

END;

FUNCTION LongToZero (paramPtr: XCmdPtr; long: Longint): Handle;

VAR
tempStr: Str255;

BEGIN
LongToStr(paramPtr, long, tempStr);:
LongToZero := PasToZero(paramPtr, tempstr);

END;

PROCEDURE SetGlobalAt (paramPtr: XCmdPtr; index: integer; long: Longint);

VAR
globalName: S$tr255;
hlong: Handle;

BEGIN
ZeroToPas (paramPtr, paramPtr~.params[index]*, globalName);
hlong := LongToZero{paramPtr, long):
SetGlobal (paramPtr, globalName, hLong);
DisposHandle {(hLong);
END;

{ These 4 routines are called in according to the command passed to the XCMD:

Initialize -~ used to initialize our globals area. ASInit will clear everything
to zero, and set up any pre-initialized variables if we wrote our program
in € or Assembly, but it can't do everything, For instance, in this XCMD,
we need to create a handle to hold our list of entries.

AddAnEntry -~ Takes the value represented by the 3 parameter passed to us by
HyperCard and adds it to our list.

SortEntries - Sorts the entries we have so far. Converts them into a string
and tells HyperCard to display them in the maessage box.

FreeData - We just receive the message saying that we are never going to be
called agaln. Therefore, we must get rid of any memory we have allocated

for our own use,

PROCEDURE Initialize;

BEGIN
gEntries := LongHandle (NewHandle(0});

gNumOfEntries := Q;
END;

PROCEDURE AddAnEntry(paramPtr: XCmdPtr):

VAR
ourA5: Longint;
tempStr; Str255;
temp: Longint;

#256: Giobals in Stand-Alone Code? 8 of 10

BEGIN

OUrAS := SetAS5 (gHostAs);

temp := ValueOfExpression(paramPtr, kEntryIndex) ;

CUrAS := SetAS(ourAb5):

SetHandleSize (Handle(gEntries), (gNumOfEntries + 1) * 4);

{$PUSH} ($R~-}

gEntries*” [gNumOfEntriesi ;= temp;

{$POP}

gNumOfEntries := gNumOfEntries + 1;
END;

PROCEDURE SortEntries(paramPtr: XCmdPtr):

VAR
ourdAS: Longint;
i, J: integer;
fullstr: Str255;
tempStr: Str255;
temp: Longint;

BEGIN
IF gNumOfEntries > 1 THEN BEGIN
FOR 1 := 0 TO gNumOfEntries ~ 2 DO BEGIN
FOR 3 := 1 + 1 TO gNumOfEntries - 1 DO BEGIN
IF gEntries~~(i} > gEntries*~{j}] THEN BEGIN
temp := gEntries~~[1i];
gEntries~~[i] := gEntries*~(j];
gEntries~~[j] := temp;
END;
END;
END;
END;

IF gNumOfEntries > 0 THEN BEGIN
fullStr := *v;
FOR 1 := 0 TO gNumOfEntries - 1 DO BEGIN

{$PUSH} {SR-)
temp := gEntries~~[i];
{SPOP)

OurAS := SetAS (gHostAS5);
NumToStr (paramPtr, temp, tempStr);
ourAS := SetAS5S(ourhA5):
fullsStr := concat (fullstr, ', ', tempStr);
END;
delete(fullstr, 1, 2); { remove the first =, =)
ourAS := SetAS(gHostA5);
SendHCMessage (paramPtr, concat('put "*, fullStr, '"')};
ourAS := SetAS5(ourAS5);
END;
END;

PROCEDURE FreeData;

BEGIN
DisposHandle {(Handle (gEntries));
END;

{ Maln routine. Big Cheese. Head Honcho. The Boss. The Man with all the moves. You
get the idea., This is the controlling routine. It first checks to see if we have
the correct number of parameters (sort of}., If that's OK, then it either creates

#256: Giobals in Stand-Alone Code? 9 of 10

a new A5 world and initializes it, or it sels up one that we've previously created.
It then dispatches to the appropriate routine, depending on what command was passed
te us. Finally, it restores the host application's A5 world, and disposes of ours
if this is the last time we are being called. }

PROCEDURE Sorter (paramPtr: XCmdPtr);

VAR
command: Integer;
ASRef: ASRefType;
errStr: Str255;
ASName; Str255;

BEGIN {Main}

WITH paramPtr® DO
IF {paramCount < 2} OR (paramCount > 3) THEN BEGIN
err5tr := 'Correct usage is: "Sorter <function> <AS> [<entry>]"';
paramPtLr~.returnvalue := PasToZero(paramPtr, errstr);
EXIT(Sorter); {leave the XCMD}
END;

command := ValueOfExpression(paramPtr, kCommandIndex) ;

IF command = kFirstTime THEN BEGIN
MakeASWorld (ASRef) ;
SetGlobalAt (paramPtr, kASRef Index, Longint (A5Ref)};
END
ELSE BEGIN
ASRef := ASRenype(ValueOfExpression(paramPtr, kASRefIndex));
END;

IF (ASRef = NIL) THEN BEGIN
errStr := 'Could not get an AS World!!!:;
paramPtr”.returnvValue := PasToZero(paramPtr, errStr):;
EXIT(Scrter); {leave the XCMD}

END;

gHostAS := SetASWorld(ASRef);

CASE command QF
kFirstTime: Initialize:
kAddEntry: AddAnEntry{paramPtr);
kSortEntries: SortEntries (paramPtr);
kLastTime: FreeData;

END;

RestoreASWorlid(gHostAS5, ASRef);

IF command = kLastTime THEN
DisposeASWorld (ASRef)

END: {main}

THE END.

Further Reference:

Inside Macintosh, Volume II, The Memory Manager & The Segment Loader
Technical Note #110, MPW: Writing Stand-Alone Code

Technical Note #208, Setting and Restoring A5

Technical Note #240, Using MPW for Non-Macintosh 68000 Systems

#256: Globals in Stand-Alone Code? 10of 10

Macintosh s
Technical Notes .

Developer Technical Support

#257: Slot Interrupt Prio-Technics
Written by: Mark Baumwell October 1989
This Technical Note describes the way interrupt priorities are scheduled, which corrects the

description of slot interrupt queue priorities in the Device Manager chapter of Inside Macintosh,
Volume V-426.

According to Inside Macintosh, Volume V-426, The Device Manager, the SQPrio field of a slot
interrupt queue element is an unsigned byte that determines the order in which slots are polled and
interrupt service routines are called. This is incorrect on all Macintosh modeis prior to the Ilci
that are running a system version earlier than System Software 7.0.

In reality, slot interrupts of lower priority values have always been called first. However, all new
Macintosh computers, starting with the Macintosh Iici, as well as all machines running System
Software 7.0 or later, will have an _SIntInstall routine that has been changed to reflect the
description in Inside Macinzosh.

In addition, the SQPrio field is, and has always been, two bytes long, but the high byte is
reserved and must be set to zero.

Apple still reserves priority values 200-255 as documented in Inside Macintosh.
Note that in any case of slot interrupts with equal priority, the most recently installed interrupt is

run first, regardless of system version.

Further Reference:

* Inside Macintosh, Volume V-426, The Device Manager

#257: Slot Interrupt Prio-Technics . 1oft

Macintosh
Technical Notes ‘

Developer Technical Support

#258: Our Checksum Bounced

Written by: Jim Reekes October 1989

This Technical Note discusses a fix to a SCSI Manager bug which concemns all developers working
with SCSI and NuBus™ device drivers.

A Bit of History

The boot code contained in the ROM has a feature used by the Start Manager to perform a
checksum on the SCSI driver being loaded. Inside Macintosh, Volume V-573, The SCSI
Manager, documents this being performed on the Macintosh SE and later models for volumes
using the new partitioning method. The truth, however, is that that checksum verification was
ncvgf performed due to a bug in the ROM, and because of this, all drivers loaded regardless of
validity.

That was the case until recently. On new Macintosh computers, the checksum verification works.
That’s the good news: we’ve fixed the bug. Now the bad news: this fix causes a number of
third-party SCSI drivers to fail to load.

Some SCSI drivers improperly implement the new partitioning scheme. If the partition map entry
name begins with the four letters “Maci” (case sensitive) and is of type “Apple_Driver”, the driver
now has its checksum verified with the entries in the partition map. If this checksum fails, the
driver is not loaded. This checksum algorithm is documented in Inside Macintosh, Volume V-573,
The SCSI Manager.

Drivers That Check In, But Don’t Check Out

The checksum routine tests the number of bytes specified in pmBoot Size, beginning at the start
of the driver boot code. Only drivers contained within the new partition map have this test
performed. If you are using the old partition map scheme documented in Inside Macintosh,
Volume IV-283, The SCSI Manager, the driver does not have its checksum validated. The
following is the startup logic in the new Macintosh ROMs:

#258: Our Checksum Bounced 1of2

IF
pmSig = $504D

pmPartName = Maci

pmPartType = Apple Driver

pmBootChecksum = ChecksumOf (bootCode, pmBootSize)
Load the driver

Do not load the driver

ELSE

Just When You Thought It Was Safe To Call _SysEnvirons

The call_SysEnvirons was created for compatibility reasons. It allows an application to make a
single call to the system to determine its characteristics, It keeps the application from reading ROM
addresses and low memory. This trap is now in the ROM of new machines. But, before you get
excited about this addition to ROM, there is something that Inside Macintosh, Volume V-5,
Compatibility Guidelines, states that must be understood by those writing SCSI drivers:

“All of the Toolbox Managers must be initialized before calling
SysEnvirons.” ... “SysEnvirons is not intended for use by device
drivers, but can be called from desk accessories.”

This statement means that neither SCSI nor NuBus device drivers can use _SysEnvirons. The
earliest possible moment to call _SysEnvirons is at INIT time. Some SCSI drivers call
_SysEnvirons, and this causes the Macintosh to crash at boot time.

To Sum Up

Check if your partition map is of the version described in the SCSI Manager chapter of Inside
Macintosh, Volume V, and contains the pmPartName and pmPartType as mentioned earlier in
this Note. If it does, then verify that the pmBoot Checksum is correct. If the checksum is not
correct, the new Macintosh computers will not load your driver.

The solution to this problem is to have a valid partition map entry in all cases and to expect the Start
Manager to perform the checksum verification regardless of the machineType.
.SysEnvirons is not available until the system has been initialized.

Further Reference:

Inside Macintosh, Volume IV-283, The SCSI Manager

Inside Macintosh, Volume V-5, Compatibility Guidelines
Inside Macintosh, Volume V-573, The SCSI Manager
Technical Note #129, _SysEnvirons: System 6.0 and Beyond

* & » 9

NuBus is a trademark of Texas Instruments

#258: Our Checksum Bounced 20f2

Macintosh 2
Technical Notes .

Developer Technical Support

#259: Old Style Colors
Writtenby: Rich “I See Colors” Collyer & Byron Han October 1989

This Technical Note covers limitations of the original Macintosh color model (eight-color) which
are not covered in Inside Macintosh, Volume I-173, QuickDraw.

QuickDraw has always been able to deal with color, just on a very limited basis. Most applications
have not made use of this feature, since Color QuickDraw-based Macintoshes come with a better
color model. There are, however, a few nice features which come with the old style color model.
With the old style colors, it is easy to print color on an ImageWriter with a color ribbon. Another
advantage is that developers do not have to write special-case code depending upon whether or not
a machine has Color QuickDraw.

Now that you are ready to convert to the old style colors, there are a few things you should know
about which do not work with old style colors. This Note covers the limitations of using old style
colors, as well as the best ways to work around these limitations.

Limitations

The most obvious limitation is that of only eight colors: black, white, red, green, blue, cyan,
yellow, and magenta. This limitation is only a problem if you want to produce a color-intensive
application; if this describes your application, then you need not read any further in this Note.

The next limitation is that off-screen buffers are not very useful. You can draw into off-screen
buffers, but there is no way to get the colors back from the buffer. This leads into the next
limitation, which is that CopyBit s cannot copy more than one color at a time.

When you call CopyBits from an off-screen buffer to your window, you need to set the
forecolor to the color you want to copy before calling CopyBits (i.e., to copy a red object, call

ForeColor (redColor)). Now when you copy the object, you can only copy one color. If
you copy different colored objects at one time, then you have a problem. The result of a
multicolored copy is that all objects copy in the same color, that of the foreground.

It is possible to work with an off-screen buffer and the old style colors, but it requires a lot of extra
work. Unless the objects are really complex, then it is probably easier to just draw the objects
directly into your window.

#259: Old Style Colors 1of2

One other limitation does exist. Consider the following code sample. One would assume thar this
sample would work at all times.

SetPort (myPort};
savedFG := myPort~.fgColor;
ForeColor {redColor); {or any other color)

{...drawing takes place here...}

ForeColor (savedFG);

Surprise. It doesn’t always work. The saved value for the fgColor field of the grafPort is
not a classic QuickDraw color if the grafPort is actually a CGrafPort. If dealing with a
CGrafPort, the fgColor field actually contains the foreground color’s entry in the color table,
so the second call to _ForeColor really messes things up.

The proper way to set and reset the foreground color with classic QuickDraw’s ForeColor call
is as follows: N

SetPort (myPort):
savedFG := myPort”~.fqColor;
FereColor {(redColor); {or any other color}

{...drawing takes place here...}
myPort”,.fgCeolor := savedfFG: {manually stuff the old fgColor back}

If (32BOD = TRUE)} Then
PortChanged {myPort):;

This Note also applies to the routine_BackColor.

What Works

The easiest way to work with these limited colors is to use pictures. When you draw the images,
you should draw into a picture. Then when you want to draw the images into your window or to a
printer, call_DrawPicture. Pictures work well with the old style colors, and you don’t need to
worry about making sure that the forecolor is current when you draw into your window.

Once you have the picture, you can use it to draw into the screen or to the printer port. You can
also set the WindowRecords windowPic to equal your PictureHandle so updates are
handled by the Window Manager.

Further Reference:

» Inside Macintosh, Volume 1-173, QuickDraw

#259: Old Style Colors 20f 2

Macintosh Z
Technical Notes .

Developer Technical Support

#260: NuBus Power Allocation
Written by: Rich “T See Colors” Collyer October 1989
This Technical Note discusses a very real power limit for NuBus™ expansion cards and warns

developers to heed this limit lest they want users trashing their machines by overextending the
Macintosh power supply.

Click-Click Mode?

Designing Cards and Drivers for the Macintosh clearly states that allowed power per NuBus slot is
13.9 watts (pg. 6-6). That is 2 amps at 5 volts, 0.175 amps at 12 volts, and 0.15 amps at -12
volts. If your Nubus card requires more than this allocation, then you need to make sure that users
do not fill all of their Nubus slots. A good rule of thumb is that if users can fill all of their slots
with your card and the machine is still able to boot, then you are okay. If the machine goes into
click-click mode, then you need to make sure that users cannot fill their slots. Click-click mode is a
safety feature of the Macintosh power supply. The Macintosh is trying to start the machine and
finding that the power requirements are greater than it can handle. The problem is that the power
supply is not getting far enough into the startup procedure to tum itself off, so it keeps trying to
turn itself on. The only way out of this mode is to pull the plug.

What’s Allowed and Why

Following are a few scenarios which might cause major heart problems for a user (these stories are
fictional, and the names have been made generic to protect the innocent).

Slot Card Power Requirement
9 video card 10 watts

A EtherTalk 10 watts

B memory card 20 watts

C AtoD 15 watts

D CPU 20 watts

E video card 10 watts

Total 85 watts

This first scenario ends with a power requirement which exceeds the allowed power by 1.6 watts.
The result of this over requirement can cause some very nasty results. Even if the machine could
work, there is no guarantee to cover a thermal problem. The Macintosh was designed with the
assumption that there would only be a need to dissipate 83.4 watts of NuBus power. If the
machine must dissipate more than 83.4 watts of NuBus power, then it is possible that you might
start burning chips.

#260: NuBus Power Allocation 1of3

An even worse scenario considers a fully loaded Macintosh IIcx. It is a lot easier to load up a Ilcx,
since the llcx has half as many slots as the II and a power limit of 41.7 watts. This second
scenario demonstrates a less high-powered user with a Ilcx.

Slot Card Power Requirement
9 32-bit video card 15 watts

A video card 10 watts

B CPU 20 watts

Total 45 watts

In the second case, the machine is overdrawn by 3.3 watts. You may think that this is not a
reasonable list of power requirements, but the reality of the power requirements is not the point.
The point is that card developers must put forth an effort to protect the users, or we all look very
bad when the silicon starts to melt. It is not very favorable to have our users buring up their
machines because a NuBus card needed more power than it was allowed.

The wattage which a card requires is not the entire problem. It is possible to stay within the 13.9
watt limit and still have problems. You must also stay within the amperage limit for each voltage.
You cannot just assume that since you are not using the 12 and -12 volts that you can use 2.78
amps of 5 volts (13.9 watts); the Macintosh power supply was not designed to convert 12 volt
power allocation to 5 volt when it is needed. Scenario three presents an example of a Macintosh II
which is filled with cards that are within the wattage limit, but that exceed the amperage limit.

Slot Card § Volt Power Requirement Amps
9 video card 10 watts 2

A EtherTalk 10 watts 2

B memory card 13.9 watts 2.78
C AtoD 13.9 watts 2.78
D CPU 13.9 watts 2.78

E video card 10 watts 2
Total 71.7 watts 14.34

Under normal conditions, the Macintosh II power supply can handle up to 12 amps at 5 volts. In
the third scenario the NuBus cards are drawing 14.34 amps. Half of the cards are within the limit,
but the other cards are not, and the result is a Macintosh which goes click-click.

But I Need the Power...

Now that we’ve told you not to take more power than you are allowed, we are going to give you a
way out. We understand that it is impossible to fit within this power budget with some types of
NuBus cards; if your card contains a processor, or worse, a lot of RAM, then you are going to run
into the power allocation very quickly. In the rare case when you do need to consume the power of
muttiple slots, then you really must make absolutely sure that the slot or slots next to your card are
not used.

The first possible solution is simply blocking off the slot or slots next to your board. You can
build a device which extends out of your card to prevent the user from inserting other cards in the
the adjoining slot or slots. The first slot to cover is the one on the component side of your card,
thus allowing increased air flow on the side of your card which is most likely a little warm. This
method, however, is not necessarily the method of choice. One of the problems with this method
is that the power allocation is not part of the NuBus specification, it is a Macintosh-specific limit.

#260: NuBus Power Allocation 20of3

?t is always possible that this limit will be raised on future machines, and you do not want to
implement this solution on machines where the problem is not a problem. The second solution is a
bit cleaner than the first; however, it also has the potential for a similar problem with future
machines.

The second solution is to design your card as a2 multiple-card implementation and have an internal
bus which connects the two cards with ribbon cables or another type of connector. The benefits to
this solution are a guarantee that users physically cannot put more cards in their systems than the
power supply can handle and you get additional real estate with which to play.

A third, and perhaps simpler, solution is to ship a slot cover with your card. You can ask users to
install the cover over the slot next to your card (or multiple slots if necessary). This cover should
keep the user from inadvertently using the slot while not forcing the loss of a slot in any future
machine with an increased power budget. This route would require an explanation and visible
warning in the documentation; however, if the users do not heed your warning, then they cannot
very well blame you for their clicking Macintosh (they will probably blame us).

These solutions are not the only ones which exist, but we haven’t thought of any other great ideas.
The main goal is to provide a method which protects users from overextending their machines. If
you can devise such a method, then more power to you (well, not really).

Don’t Get Flamed

So the moral (what's that) of the story is that you need to put yourself into the shoes of your users
(but don’t try it literally). If they burn up our computers or find themselves in click-click mode
because a NuBus card got a little greedy, then they are going to be very upsct, and that is
something that both Apple and third-party developers need to work very hard to prevent. If you
“need” the extra power, then you must make absolutely sure that users are not going to get burned
by your NuBus card.

Further Reference:

« Designing Cards and Drivers for the Macintosh
IEEE Standard for a Simple 32-Bit Backplane Bus: NuBus
+ Technical Note #234, NuBus Physical Designs—Beware

NuBus is a trademark of Texas Instruments

#260: NuBus Power Allocation Jof3

Macintosh]
Technical Notes .

Developer Technical Support

#261: Cache As Cache Can
Written by: Andrew Shebanow October 1989
This Technical Note documents some new traps for manipulating the data and instruction caches on

68030-based Macintosh models and describes the MMU mapping set up by the ROMs for
NuBus™ cards.

The Motorola MC68030 CPU used by the Macintosh IIx, Ilcx, Ilci, and SE/30 includes a data
cache, an instruction cache, and a MMU (Memory Management Unit). This Note describes the
problems that data caching can cause, Apple’s solution to this problem, and additional information
about MMU mapping on MC68030-equipped machines.

Stale Data (Baked Fresh Daily)

Designing Cards and Drivers for the Macintosh Il and SE, which was written before these
machines were released, states:

“Future systems may implement data caching (based upon the MC68030, for
example). To support this, RAM-like cards should always supply all 32 bits,
regardless of the NuBus request....

Note that caching of data can be controlled by software; that is, some address
spaces can be declared non-cacheable. Any card that is not capable of supporting a
full 32-bit read must have its corresponding driver software set up the caching
control appropriately.”

Data caching can be a problem if you are working on a system with multiple bus masters, since you
can get stale data. Following is an example of a situation where the problem occurs.

Lets say that you have a whizzy disk controller card that supports DMA. The board reads
command buffers from the main CPU’s memory area and writes status information back to the
command buffer when done. Before the command is started, the 68030 sets up the command
buffer and zeroes the status code (the following figures are not to scale).

#261: Cache As Cache Can 10of4

Expansion Card
0
(! — Data Cache
0
0
Motherboard MC68030

Figure 1-Write Through Cache

At this point the cache and the memory both contain the value 0, since the 68030°s cache is
write-through (that is, it always writes data to memory immediately). Now the 68030 starts the
command running and waits for an interrupt from the disk controller card. It then reads back the
status from the command buffer.

Expansion Card
-23
Y Data Cache
-23 0
0
Motherboard MC68030
Figure 2-Read From Cache

Oops! Because the status code’s value was already in cache, the 68030 thought that the status was
0, even though the actual value in memory was -23. This type of thing can cause some very
hard-to-find bugs in your driver. Fortunately, Apple provides some traps which let you flush the
data and instruction caches without using privileged instructions (which is, as you should all know
by now, a major no-no).

#261: Cache As Cache Can 20of4

Note: The MMU allows pieces of memory to be marked non-cacheable. All 68039
Macintoshes tumn off data caching for all address areas which are not designated as
RAM or ROM space in the memory map. What this means in practice is that you
never need to worry about the stale data problem in reverse: the CPU won’t cache
data stored on NuBus cards.

Following are the interfaces for these calls, for MPW Pascal and C (respectively):

FUNCTION SwapInstructionCache (cacheEnable: BOQLEAN): BOOLEAN;
pascal Boolean SwaplInstructionCache (Boolean cacheEnable);

This call enables or disables the instruction cache according to the state passed in cacheEnable
and returns the previous state of the instruction cache as a result.

PROCEDURE FlushInstructionCache;
pascal vold FlushInstructionCache({void);

This call flushes the current contents of the instruction cache. This has an adverse effect on CPU
performance, so only call it when absolutely necessary.

FUNCTION SwapDataCache (cacheEnable: BOOLEAN): BOOLEAN;
pascal Boolean SwapDataCache (Boolean cacheEnable);

This call enables or disables the date cache according to the state passed in cacheEnable and
returns the previous state of the data cache as a result.

PROCEDURE FlushDataCache;
pascal void FlushDataCache (void);

This call flushes the current contents of the data cache. This has an adverse effect on CPU
performance, so only call it when absolutely necessary.

Note: Before you call any of these routines, make sure that the HWPriv ($A198) trap is
implemented, or your program will crash.

These calls are provided as part of the MPW 3.1 library. For those of you without MPW 3.1, you
can use the following MPW assembly-language glue:

CASE OFF

_HWPriv OPWORD SA198

SwaplnstructionCache PROC EXPORT

MOVEA.L (AT)+,Al ; save return address
MOVEQ #0,D0 : clear DO before we shove Boolean into it
MOVE,.B (A7) +,D0 : DO <- new mode
MOVE.L DO, AC ; _HWPriv wants mode in AO
CLR.W DO ; set low word to 0 (routine selector)
_EWPriv
MOVE.W AD,DO : move old state of cache to DO
TST.W Do ; 1f non-zero, cache was enabled
BEQ.S WasFalse ; if zero, leave result false
MOVEQ $1,D0 ; set result to true
WasFalse:
MOVE.B DO, (A7} ; save result on stack
JMP (Al)
ENDPROC

#261: Cache As Cache Can 3of4

FlushInstructionCache PROC EXPORT

MOVEA.L (A7) +,Al
MCVEQ #1,D0
_HWPriv
JMP (A1)
ENDPROC
SwapDataCache PROC EXPCRT
MCVEA.L (A7) +,Al
MOVEQ #0,D0
MOVE.B {AT)+,D0
MOVE.L DO, AD
MOVE,.W 32,00
_HwWPriv
MOVE ., W AQ,DO
TST.W Do
BEQ.S WasFalse
MOVEQ #1,D0
WasFalse:
MOVE.B DO, (A1)
JMP {Al)
ENDPROC
FlushDataCache PROC EXPORT
MOVEA.L (A7) +,Al
MOVEQ #53,D0
_HWPriv
JMP {Al)
ENDPROC

Further Reference:

; save return address
set low word to 1 {(routine selector)

: save return address

clear DO before we shove Boolean into it

DO <~ new mode
_HWPriv wants mode in AD
set low word to 2 {routine selector)

move old state of cache to DO
if non-zero, cache was enabled
if zero, leave result false
set result to true

; save result on stack

: save return address
set low word to 3 (routine selector)

« Inside Macintosh, Volume V, Operating System Utilities
« Designing Cards And Drivers for the Macintosh Il and SE

+ SE/30 Developer Notes (APDA)

NuBus is a trademark of Texas Instruments

#261: Cache As Cache Can

40f4

Macintosh s
Technical Notes .

Developer Technical Support

#0: About Macintosh Technical Notes October 1989

Technical Note #0 (this document) accompanies each release of Macintosh Technical Notes. This
release includes revisions to Notes 129, 161, 176, 184, 193, 196, 206, 221, 238, 244, 247-249,
and 252-253, new Notes 254-261, and an index to all released Macintosh Technical Notes. If
there are any subjects which you would like to see treated in a Technical Note (or if you have any
questions about existing Technical Notes), please contact us at one of the following addresses:

Macintosh Technical Notes
Developer Technical Support
Apple Computer, Inc.

20525 Mariani Avenue, M/S 75-3T
Cupertino, CA 95014

AppleLink: MacDTS

MCI Mail: MacDTS

We want Technical Notes to be distributed as widely as possible, so they are sent to all Partners
and Associates at no charge; they are also posted on AppleLink in the Developer Services bulletin
board and other electronic sources, including the Apple FIP site (IP 130.43.2.2). You can also
order them through APDA. As an APDA cusiomer, you have access to the tools and
documentation necessary to develop Apple-compatible products. For more information about
APDA, contact:

APDA

Apple Computer, Inc.

20525 Mariani Avenue, M/S 33-G
Cupertino, CA 95014

(800) 282-APDA or (800) 282-2732
Fax: (408) 562-3971

Telex: 171-576

AppleLink: APDA

We place no restrictions on copying Technical Notes, with the exception that you cannot resell
them, so read, enjoy, and share. We hope Macintosh Technical Notes will provide you with lots
of valuable information while you are developing Macintosh hardware and software. The
following pages list all Macintosh Technical Notes that have been released (both by number and by
subject).

#0: About Macintosh Technical Notes 1 of 13

October 1989

New ***
Revised *R*

Released Macintosh Technical Notes

Indexed by Number

Number Title Released
1 Desk Accessories and System Resources obsolete
2 Compatibility Guidelines 3/88
3 Command-Shift-Number Keys 3/88
4 Error Returns from GetNewDialog 3/88
5 Using Modeless Dialogs from Desk Accessories 3/88
6 Shortcut for Owned Resources 3/88
7 A Few Quick Debugging Tips 3/88
8 RecoverHandle Bug in AppleTalk Pascal Interfaces obsolete
9 Will Your AppleTalk Application Support Internets? 3/88
10 Pinouts 3/88
11 Memory-Based MacWrite Format obsolete 8/89
12 Disk-Based MacWrite Format obsolete 8/89
13 MacWrite Clipboard Format obsolete 8/89
14 The INIT 31 Mechanism obsolete
15 Finder 4.1 obsolete
16 MacWorks XL obsolete
17 Low-Level Print Driver Calls obsolete
18 TextEdit Conversion Utility 3/88
19 How to Produce Continuous Sound Without Clicking 6/89
20 Data Servers on Appletalk 3/88
21 QuickDraw’s Internal Picture Definition 3/88
22 TEScroll Bug 3/88
23 Life With Font/DA Mover—Desk Accessories 3/88
24 Available Volumes 3/88
25 Don’t Depend on Register AS Within Trap Patches 3/88
26 Character vs. String Operations in QuickDraw 3/88
27 MacDraw ‘PICT’ File Format obsolete 8/89
28 Finders and Foreign Drives 3/88
29 Resources Contained in the Desktop File 3/88
30 Font Height Tables 3/88
31 unused
32 Reserved Resource Types 3/88
33 ImageWriter I Paper Motion 3/88
34 User Items in Dialogs 10/88
35 DrawPicture Problem obsolete
36 Drive Queue Elements 3/88
37 Differentiating Between Logic Boards obsolete
38 The ROM Debugger 3/88
39 Segment Loader Patch obsolete
40 Finder Flags 3/88
41 Drawing Into an Off-Screen Bitmap 3/88
42 Pascal Routines Passed by Pointer 3/88
43 Calling LoadSeg obsolete
44 HFS Compatibility 3/88
45 Inside Macintosh Quick Reference obsolete
46 Separate Resource Files 3/88
47 Customizing Standard File 3/88
48 Bundles 3/88
49 unused

#0: About Macintosh Technical Notes 2 of 13

50 Calling SetResLoad 3/88

51 Debugging With PurgeMem and CompactMem 3/88

52 Calling Launch From a High-Level Language obsolete
53 MoreMasters Revisited 3/88

54 Limit to Size of Resources obsolete
35 Drawing Icons 3/88

56 Break/CTS Device Driver Event Structure 3/88

57 Macintosh Plus Overview obsolete
58 International Utilities Bug obsolete
59 Pictures and Clip Regions 3/88

60 Drawing Characters in a Narrow GrafPort 3/88

61 GetltemStyle Bug obsolete
62 Don’t Use Resource Header Application Bytes 3/88

63 WriteResource Bug Patch obsolete
64 TAZNotify obsolete
65 Macintosh Plus Pinouts 3/88

66 Determining Which File System is Active 3/88

67 Finding the “Blessed Folder” 3/88

68 Searching All Directories on an HFS Volume 10/88
69 Setting ioFDirIndex in PBGetCatlnfo Calls 3/88

70 Forcing Disks to be Either 400K or 800K 3/88

71 Finding Drivers in the Unit Table 3/88

72 Optimizing for the LaserWriter—Techniques 3/88

73 Color Printing 3/88

74 Don’t Use the Resource Fork for Data 3/88

75 The Installer and Scripts 3/88

76 The Macintosh Plus Update Installation Script obsolete
77 HFS Ruminations 3/88

78 Resource Manager Tips 3/88

79 ZoomWindow 3/88

80 Standard File Tips 3/88

81 Caching 3/88

82 TextEdit: Advice & Descent 3/88

83 System Heap Size Warning 3/88

84 Edit File Format 3/88

85 GetNextEvent; Blinking Apple Menu 3/88

86 MacPaint Document Format 6/89

87 Error in FCBPBRec 3/88

88 Signals 3/88

89 DrawPicture Bug obsolete
90 SANE Incompatibilities obsolete
91 Optimizing for the LaserWriter—Picture Comments 3/88

92 The Appearance of Text 3/88

93 MPW: {$L.LOAD} ;_Datalnit; %_ MethTables 3/88

94 Tags 3/88

95 How to Add Iterns to the Print Dialogs 3/88

96 SCSI Bugs 3/88

97 PrSetError Problem obsolete
98 Short-Circuit Booleans in Lisa Pascal obsolete
99 Standard File Bug in System 3.2 obsolete
100 Compatibility with Large-Screen Displays 3/88
101 CreateResFile and the Poor Man’s Search Path 3/88
102 HFS Elucidations 3/88
103 Using MaxApplZone and MoveHHi from Assembly 3/88
104 MPW: Accessing Globals From Assembly Language 3/88
105 MPW Object Pascal Without MacApp 3/88
106 The Real Story: VCBs and Drive Numbers 3/88

#0: About Macintosh Technical Notes 3 of 13

107 Nulls in Filenames 3/88
108 _AddDrive, _Drvrlnstall, and _DrvrRemove 12/88
109 Bugin MPW 1.0 Language Libraries obsolete
110 MPW: Writing Stand-Alone Code 3/88
111 MoveHHi and SetResPurge 3/88
112 FindDIltem 3/88
113 Boot Blocks 3/88
114 AppleShare and Old Finders 3/88
115 Application Configuration with Stationery Pads 3/88
116 AppleShare-able Apps. and the Resource Manager 3/88
117 Compatibility: Why and How 3/88
118 How to Check and Handle Printing Errors 3/88
119 Determining if Color QuickDraw Exists obsolete
120 Drawing Into an Off-Screen Pixel Map 4/89
121 Using the High-Level AppleTalk Routines 3/88
122 Device-Independent Printing 3/88
123 Bugs in LaserWriter ROMs 3/88
124 Using Low-Level Printing Calls With AT ImageWriters 3/88
125 Effect of Spool-a-page/Print-a-page on Shared Printers 3/88
126 Sub(Launching) from a High-Level Language 4/89
127 TextEdit EOL Ambiguity 3/88
128 PrGeneral 3/88
R 129 _SysEnvirons: System 6.0 and Beyond 10/89
130 Clearing ioCompletion 3/88
131 TextEdit Bugsin System 4.2 3/88
132 AppleTalk Interface Update 3/88
133 AmI Talking to a LaserShare Spooler? 3/88
134 Hard Disk Medic & Booting Camp 3/88
135 Getting through CUSToms 3/88
136 Register A5 Within GrowZone Functions 3/88
137 AppleShare 1.1 Server FPMove Bug 3/88
138 Using KanjiTalk with a non-Japanese Macintosh Plus 3/88
139 Macintosh Plus ROM Versions 3/88
140 Why PBHSetVol is Dangerous 3/88
141 Maximum Number of Resources in a File 3/88
142 Avoid Use of Network Events 3/88
143 Don’t Call ADBRelnit on the SE with System 4.1 3/88
144 Macintosh II Color Monitor Hookups 3/88
145 Debugger FKEY 3/88
146 Notes on MPW Pascal’s - mc68881 Option 3/88
147 Finder Notes: “Get Info” Default & Icon Masks 3/88
148 Suppliers for Macintosh II Board Developers 3/88
149 Document Names and the Printing Manager 3/88
150 Macintosh SE Disk Driver Bug obsolete
151 System Error 33, “zcbFree has gone negative” 3/88
152 Using Laser Prep Routines 3/88
153 Changes in International Utilities and Resources 3/88
154 Displaying Large PICT Files 3/88
155 Handles and Pointers—Identity Crisis 3/88
156 Checking for Specific Functionality 3/88
157 Problem with GetVInfo 3/88
158 Frequently Asked MultiFinder Questions 3/88
159 Hard Disk Hacking 3/88
160 Key Mapping 3/88
R 161 Whento Call _PrOpen and _PrClose 10/89
162 MPW 2.0 Pascal Compiler Bug obsolete
163 Adding Color With CopyBits 3/88
#0: About Macintosh Technical Notes 4 of 13

164 MPW C Functions: To declare or not to declare, ... 3/88
165 Creating Files Inside an AppleShare Drop Folder 3/88
166 MPW C Functions Using Strings or Points as Arguments 3/88
167 AppleShare Foreground Applications 3/88
168 HyperCard ‘snd ’ Resources 3/88
169 HyperCard 1.01 and 1.1 Anomalies 3/88
170 HyperCard File Format 3/88
171 PackBits Data Format 2/89
172 Parameters for MDEF Message #3 3/88
173 PrGeneral Bug 3/88
174 Accessing the Script Manager Print Action Routine 3/88
175 SetLineWidth Revealed 3/88
R 176 Macintosh Memory Configurations 10/89
177 Problem with WaitNextEvent in MultiFinder 1.0 3/88
178 Modifying the Standard String Comparison 3/88
179 Setting ioNamePtr in File Manager Calls 3/88
180 MultiFinder Miscellanea 8/89
181 Every Picture [Comment] Tells Its Story, Don’t it? 3/88
182 How to Construct Word-Break Tables 3/88
183 Position-Independent PostScript 3/88
R 184 Notification Manager 10/89
185 OpenRFPerm: What your mother never told you 4/88
186 PBLock/UnlockRange 4/88
187 Don’t Look at ioPosOffset 4/88
188 ChangedResource: Too much of a good thing 4/88
189 Version Territory 4/89
190 Working Directories and MultFinder 4/88
191 Font Names 8/88
192 Surprises in LaserWriter 5.0 and newer 4/88
R 193 So Many Bitmaps, So Little Time 10/89
194 WMgrPortability 4/88
195 ASP and AFP Description Discrepancies 8/88
R 196 CDEF Parameters 10/89
197 Chooser Enhancements 8/88
198 Font/DA Mover, Styled Fonts, and NFNTs 8/88
199 KilINBP Clarification 8/88
200 MPW 2.0.2 Bugs 10/88
201 ReadPacket Clarification 8/88
202 Resetting the Event Mask 12/88
203 Don’t Abuse the Managers 8/88
204 HFS Tidbits 8/88
205 MuldFinder Revisited, The 6.0 System Release 8/89
R 206 Space Aliens Ate My Mouse (ADB-The Untold Story) 10/89
207 Styled TextEdit Changes in System 6.0 12/88
208 Setting and Restoring A5 6/89
209 High Sierra & ISO 9660 CD ROM Formats 8/88
210 The Desktop File’s Outer Limits 8/88
211 Palette Manager Changes in System 6.0.2 10/88
212 The Joy of Being 32-Bit Clean 6/39
213 _StripAddress: The Untold Story 10/88
214 New Resource Manager Calls 10/88
215 “New” cdev Messages 10/88
216 AppleShare 1.1 and 2.0 Limits 10/88
217 Where Have My Font Icons Gone? 12/88
218 New High-Level File Manager Calls 12/88
219 New Memory Manager Glue Routines 12/88
220 Segment Loader Limitations 12/88
#0: About Macintosh Technical Notes 5 of 13

R 221 NuBus Interrupt Latency (I Was a Teenage DMA Junkie) 10/89
222 Custom Menu Flashing Bug 2/89
223 Assembly Language Use of _InitGraf with MPW 2/89
224 Opening AppleTalk 2/89
225 Using RegisterName 2/89
226 Moving Your Cat 2/89
227 Toolbox Karma 2/89
228 Use Care When Swapping MMU Mode 4/89
229 A/UX 1.1 Toolbox Bugs 6/89
230 Pertinent Information About the Macintosh SE/30 6/89
231 Macintosh Allegro Common LISP Features 4/89
232 Swip With _OpenResFile and _OpenRFPerm 4/89
233 MultiFinder and _SetGrowZone 6/89
234 NuBus Physical Designs—Beware 6/89
235 Cooperating with the Coprocessor 6/89
236 Speedy the Math Coprocessor 6/89
237 TextEdit Record Size Limitations Revisited 6/39
R 238 Getting a Full Pathname 10/89
239 Inside Object Pascal 6/89
240 Using MPW for Non-Macintosh 68000 Systems 6/89
241 Script Manager’s Pixel2Char Routine 8/89
242 Fonts and the Script Manager 6/89
243 Script Manager Variables 6/89
R 244 AlLeading Cause of Color Cursor Cursing 10/89
245 Font Family Numbers 8/89
246 Mixing HFS and C File /O 8/89
R 247 Giving the (Desk)Hook to INITs 10/89
R 248 DAs & Drivers in Need of (a Good) Time 10/89
R 249 Opening the Serial Driver 10/89
250 AppleTalk Phase 2 on the Macintosh 10/89
251 Safecdevs 10/89
R 252 Plotting Small Icons 10/89
R 253 'SICN' Tired of Large Icons in Menus? 10/89
**% 254 Macintosh Portable PDS Development 10/89
#%% 255 Macintosh Portable ROM Expansion 10/89
*%% 256 Globals in Stand-Alone Code? 10/89
**%* 257 Slot Interrupt Prio-Technics 10/89
**% 258 Our Checksum Bounced 10/89
**% 259 OId Style Colors 10/89
*#% 260 NuBus Power Allocation 10/89
**% 261 Cache As Cache Can 10/89
#0: About Macintosh Technical Notes 6 of 13

Released Macintosh Technical Notes October 1989

Indexed by Subject New ***
Revised *R*

ADB
143 Don’t Call ADBRelnit on the SE with System 4.1 3/88
160 Key Mapping 3/88
R 206 Space Aliens Ate My Mouse (ADB-The Untold Story) 10/89
AppleShare
114 AppleShare and Old Finders 3/88
115 Application Configuration with Stationery Pads 3/88
116 AppleShare-able Apps. and the Resource Manager 3/88
137 AppleShare 1.1 Server FPMove Bug 3/88
165 Creating Files Inside an AppleShare Drop Folder 3/88
167 AppleShare Foreground Applications 3/88
216 AppleShare 1.1 and 2.0 Limits 10/88

AppleTalk Manager

9 Will Your AppleTalk Application Support Internets? 3/88
20 Data Servers on Appletalk 3/88
121 Using the High-Level AppleTalk Routines 3/88
132 AppleTalk Interface Update 3/88
142 Avoid Use of Network Events 3/88
195 ASP and AFP Description Discrepancies 8/88
199 KilINBP Clarification 8/88
201 ReadPacket Clarification 8/88
224 Opening AppleTalk 2/89
225 Using RegisterName 2/89
250 AppleTalk Phase 2 on the Macintosh 8/89
Applications
84 Edit File Format 3/88
86 MacPaint Document Format 6/89
A/UX
229 A/UX 1.1 Toolbox Bugs 6/89
CD ROM
209 High Sierra & 1SO 9660 CD ROM Formats 8/88

#0: About Macintosh Technical Notes 7 of 13

Compatibility

2 Compatibility Guidelines 3/88
25 Don’t Depend on Register A5 Within Trap Patches 3/88
44 HFS Compatibility 3/88
83 System Heap Size Warning 3/88
100 Compatibility with Large-Screen Displays 3/88
103 Using MaxApplZone and MoveHHi from Assembly 3/88
117 Compatibility: Why and How 3/88
R 129 _SysEnvirons: System 6.0 and Beyond 10/89
155 Handles and Pointers—Identity Crisis 3/88
156 Checking for Specific Functionality 3/88
194 WMgrPortability 4/88
203 Don’t Abuse the Managers 8/88
208 Setting and Restoring A5 6/89
212 The Joy of Being 32-Bit Clean 6/89
213 _StripAddress: The Untold Story 10/88
227 Toolbox Karma 2/89
R 247 Giving the (Desk)Hook to INITs 10/89
R 248 DAs & Drivers in Need of (a Good) Time 10/89
R 249 Opening the Serial Driver 10/89
Control Manager
R 196 CDEF Parameters 10/89
Control Panel
215 “New” cdev Messages 10/88
251 Safecdevs 8/89
Debugging
7 A Few Quick Debugging Tips 3/88
38 The ROM Debugger 3/88
42 Pascal Routines Passed by Pointer 3/88
51 Debugging With PurgeMem and CompactMem 3/88
145 Debugger FKEY 3/88
151 System Error 33, “zcbFree has gone negative” 3/88
Desk Accessories
5 Using Modeless Dialogs from Desk Accessories 3/88
23 Life With Font/DA Mover—Desk Accessories 3/88
Device Manager
36 Drive Queue Elements 3/88
56 Break/CTS Device Driver Event Structure 3/88
71 Finding Drivers in the Unit Table 3/88
187 Don’t Look at ioPosOffset 4/88
197 Chooser Enhancements 8/88
**% 257 Slot Interrupt Prio-Technics 10/89
#0: About Macintosh Technical Notes 8 of13

Dialog Manager

4 Error Retumns from GetNewDialog 3/88
34 User Items in Dialogs 10/88
112 FindDItem 3/88
Disk Initialization Package
70 Forcing Disks to be Either 400K or 800K 3/88
Event Manager
3 Command-Shift-Number Keys 3/88
85 GetNextEvent; Blinking Apple Menu 3/88
202 Resetting the Event Mask 12/88
File Manager
24 Available Volumes 3/88
66 Determining Which File System is Active 3/88
67 Finding the “Blessed Folder” 3/88
68 Searching All Directories on an HFS Volume 10/88
69 Setting ioFDirIndex in PBGetCatlInfo Calls 3/88
77 HFS Ruminations 3/88
81 Caching 3/88
87 Error in FCBPBRec 3/88
94 Tags 3/88
102 HFS Elucidations 3/38
106 The Real Story: VCBs and Drive Numbers 3/88
107 Nulls in Filenames 3/88
108 _AddDrive, _Drvrinstall, and _DrviRemove 12/88
130 Clearing ioCompletion 3/88
140 Why PBHSetVol is Dangerous 3/88
157 Problem with GetVInfo 3/88
179 Setting ioNamePtr in File Manager Calls 3/88
186 PBLock/UnlockRange 4/88
190 Working Directories and MultiFinder 4/88
204 HFS Tidbits 8/88
218 New High-Level File Manager Calls 12/88
226 Moving Your Cat 2/89
R 238 Getting a Full Pathname 10/89
246 Mixing HFS and C File /O 8/89
Font Manager
30 Font Height Tables 3/88
191 Font Names 8/88
198 Font/DA Mover, Styled Fonts, and NFNTs 8/88
245 Font Family Numbers 8/89
#(: About Macintosh Technical Notes 9 of13

Hardware

R 176
R 221

k% 254
LR R 255
LE R 3 260
LR 2 261

HyperCard

168
169
170

International

138
153
178

Pinouts

Macintosh Plus Pinouts

Macintosh II Color Monitor Hookups

Suppliers for Macintosh II Board Developers
Macintosh Memory Configurations

NuBus Interrupt Latency (I was a teenage DMA junkie)
Pertinent Information About the Macintosh SE/30
NuBus Physical Designs—Beware

Cooperating with the Coprocessor

Speedy the Math Coprocessor

Macintosh Portable PDS Development

Macintosh Portable ROM Expansion

NuBus Power Allocation

Cache As Cache Can

HyperCard ‘snd ’ Resources
HyperCard 1.01 and 1.1 Anomalies
HyperCard File Format

Using KanjiTalk with a non-Japanese Macintosh Plus
Changes in International Ultilities and Resources
Modifying the Standard String Comparison

Memory Manager

53

111
136
219
228

MPW
93

105
110
146

166
200
223
240
*x% 956

MoreMasters Revisited

MoveHHi and SetResPurge

Register A5 Within GrowZone Functions
New Memory Manager Glue Routines
Use Care When Swapping MMU Mode

MPW: {$LOAD} ;_Datalnit; %_MethTables

MPW: Accessing Globals From Assembly Language
MPW Object Pascal Without MacApp

MPW: Writing Stand-Alone Code

Notes on MPW Pascal’s -mc68881 Option

MPW C Functions: To declare or not to declare, ...
MPW C Functions Using Strings or Points as Arguments
MPW 2.0.2 Bugs

Assembly Language Use of _InitGraf with MPW
Using MPW for Non-Macintosh 68000 Systems
Globals in Stand-Alone Code?

3/88
3/88
3/88
3/838
10/89
10/89
6/89
6/89
6/89
6/89
10/89
10/89
10/89
10/89

3/88
3/88
3/88

3/88
3/38
3/88

3/88
3/88
3/88
12/88
4/89

3/88
3/88
3/88
3/88
3/88
3/88
3/88
10/88
2/89
6/89
10/89

#0: About Macintosh Technical Notes

100f 13

Menu Manager

172
222

MultiFinder

158
177
180
205
233

Parameters for MDEF Message #3
Custom Menu Flashing Bug

Frequently Asked MultiFinder Questions
Problem with WaitNextEvent in MultiFinder 1.0
MultiFinder Miscellanea

MultiFinder Revisited, The 6.0 System Release
MultiFinder and _SetGrowZone

Notification Manager

R 184

Notification Manager

Palette Manager

211

Palette Manager Changes in System 6.0.2

Programming Languages & Tips

88

135
231
239

Print Manager

33
72
73
91
92
95

R 161

175
183

217

Signals

Getting through CUSToms

Magcintosh Allegro Common LISP Features
Inside Object Pascal

ImageWriter II Paper Motion

Optimizing for the LaserWriter—Techniques

Color Printing

Optimizing for the LaserWriter—Picture Comments
The Appearance of Text

How to Add Items to the Print Dialogs

How to Check and Handle Printing Errors
Device-Independent Printing

Bugs in LaserWriter ROMs

Using Low-Level Printing Calls With AT ImageWriters
Effect of Spool-a-page/Print-a-page on Shared Printers
PrGeneral

Am I Talking to a LaserShare Spooler?

Document Names and the Printing Manager

Using Laser Prep Routines

When to Call _PrOpen and _PrClose

PrGeneral Bug

SetLineWidth Revealed

Position-Independent PostScript

Surprises in LaserWriter 5.0 and newer

Where Have My Font Icons Gone?

3/88
2/89

3/88
3/88
8/89
8/89
6/89

10/89

3/88
3/88
4/89
6/89

3/88
3/88
3/88
3/88
3/88
3/88
3/88
3/88
3/88
3/88
3/88
3/88
3/38
3/88
3/88

10/89

3/88
3/88
3/88
4/38

12/88

#0: About Macintosh Technical Notes

110of 13

QuickDraw

21 QuickDraw’s Internal Picture Definition 3/88
26 Character vs. String Operations in QuickDraw 3/88
41 Drawing Into an Off-Screen Bitmap 3/88
55 Drawing Icons 3/88
59 Pictures and Clip Regions 3/88
60 Drawing Characters in a Narrow GrafPort 3/88
120 Drawing Into an Off-Screen Pixel Map 4/89
154 Displaying Large PICT Files 3/88
163 Adding Color With CopyBits 3/88
171 PackBits Data Format 2/89
181 Every Picture [Comment] Tells Its Story, Don’t it? 3/88
R 193 So Many Bitmaps, So Little Time 10/89
R 244 A Leading Cause of Color Cursor Cursing 10/89
s 259 Qld Style Colors 10/89
Resource Manager
6 Shortcut for Owned Resources 3/88
32 Reserved Resource Types 3/88
46 Separate Resource Files 3/88
50 Calling SetResbLoad 3/88
62 Don’t Use Resource Header Application Bytes 3/88
74 Don’t Use the Resource Fork for Data 3/88
78 Resource Manager Tips 3/88
101 CreateResFile and the Poor Man’s Search Path 3/88
141 Maximum Number of Resources in a File 3/88
185 OpenRFPerm: What your mother never told you 4/88
188 ChangedResource: Too much of a good thing 4/88
214 New Resource Manager Calls 10/88
232 Strip With _OpenResFile and _OpenRFPerm 4/89
R 252 Plotting Small Icons 10/89
R 253 'SICN' Tired of Large Icons in Menus? 10/89
Script Manager
174 Accessing the Script Manager Print Action Routine 3/88
182 How to Construct Word-Break Tables 3/88
241 Script Manager’s Pixel2Char Routine 8/89
242 Fonts and the Script Manager : 6/89
243 Script Manager Variables 6/89
SCSI Manager
96 SCSI Bugs 3/88
159 Hard Disk Hacking 3/88
s¢+ 258 Our Checksum Bounced 10/89
Segment Loader
126 Sub(Launching) from a High-Level Language 4/39
220 Segment Loader Limitations 12/88
#0: About Macintosh Technical Notes 120f 13

Sound Driver

19 How to Produce Continuous Sound Without Clicking 6/89
Standard File Package
47 Customizing Standard File 3/88
80 Standard File Tips 3/88
System Software
28 Finders and Foreign Drives 3/88
29 Resources Contained in the Desktop File 3/88
40 Finder Flags 3/88
48 Bundles 3/88
75 The Installer and Scripts 3/88
113 Boot Blocks 3/88
134 Hard Disk Medic & Booting Camp 3/88
139 Macintosh Plus ROM Versions 3/88
147 Finder Notes: “Get Info” Default & Icon Masks 3/88
189 Version Territory 4/89
210 The Desktop file’s Outer Limits 8/88
TextEdit
18 TextEdit Conversion Utility 3/88
22 TEScroll Bug 3/88
82 TextEdit: Advice & Descent 3/88
127 TextEdit EOL Ambiguity 3/88
131 TextEdit Bugs in System 4.2 3/88
207 Styled TextEdit Changes in System 6.0 12/88
237 TextEdit Record Size Limitations Revisited 6/89
Window Manager
79 ZoomWindow 3/88
#0: About Macintosh Technical Notes 130f 13

Macintosh ’
Technical Notes .

Developer Technical Support

#176: Macintosh Memory Configurations

Revised by: Craig Prouse & Dennis Hescox October 1989
Written by: Cameron Birse November 1987

This Technical Note describes the different possible memory configurations of all models of the
Macintosh family that use Single Inline Memory Modules (SIMMs) as well as the non-SIMM
memory upgrade options of the Macintosh Portable. Special thanks to Brian Howard for the
Macintosh Plus and original SE drawings, and for the inspiration for the other drawings.

Changes since April 1989: Added configurations for the Macintosh IIci and Macintosh
Portable and a section describing special problems relating to the use of four megabit (Mbit) DRAM
SIMMs in the Macintosh II and IIx.

Macintosh Developer Technical Support receives numerous questions about the many different
possible configurations of RAM on the different Macintoshes, so we’ll attempt to answer these
questions in this Technical Note, as well as provide a showcase for some outstanding artwork by
Apple engineer Brian Howard.

Warning: Because the video monitor is built in, there are dangerous voltages inside the
cases of the Macintosh Plus and Macintosh SE computers. The video tube
and video circuitry may hold dangerous charges long after the computer’s
power is turned off. Opening the case of the Macintosh Plus and Macintosh
SE computers requires special tools and may invalidate your warranty.
Installation of RAM in the SIMM sockets in these computers should be done
by qualified service personnel only.

Macintosh Plus
The Macintosh Plus has the following possible configurations (see Figure 1):

512K, using two 256 Kbit SIMMs

1 MB, using four 256 Kbit SIMMs

2 MB, using two 1Mbit SIMMs

2.5 MB, using two 1Mbit SIMMs and two 256Kbit SIMMs
4MB, using four 1Mbit SIMMs

It is important to place the SIMMs in the correct location when using a combination of SIMM sizes,
as in the 2.5 MB example, and to make sure the right resistors are cut. Refer to Figure 1 for the
correct location of the SIMMs and size resistors.

#176: Macintosh Memory Configurations 1 of 10

Macintosh Ilcx
uu
[]

]

ROM SIMM

(SIMMs must be 120 nS RAS-access time
or faster, and the same speed within a row.)

Macintosh [lex memory configurations are
identical to the II, TIx, and SE/30.

Macintosh Tici
ROM SIMM

= [5] \
= b =

NuBus Slots -

Bugk B A

Disk Drives

(SIMMs must be 80 nS RAS-access time
or faster, and the same speed within a row.)

Hard Drisk

Figure 5~Macintosh Ilcx, Ilci, and Portable Memory Configurations

9|1

(SIMMs must be 150 nS RAS-access time or faster, and the s

System Memory Size:

SIMMs Configuration

Row 1 (SIMMs 1 & 2):
Row 2 (SIMMs 3 & 4):

RAM SIZE Resistors
256 Kbit (R8):
One Row (R9):

System Memory Size:

SIMM:s Configuration
Row 1 (SIMMs 1 & 2):
Row 2 (SIMMs 3 & 4):

RAM SIZE Resistors
256 Kbit (R8):
One Row (R9):

Systern Memory Size:

SIMMs Configuration

Row 1 (SIMMs 1 & 2):
Row 2 (SIMMs 3 & 4):

RAM SIZE Resistors
256 Kbit (R8):
One Row (R9):

System Memory Size:

SIMMs Configuration

Row 1 (SIMMs 1 & 2):
Row 2 (SIMMs 3 & 4):

RAM SIZE Resistors
256 Kbit (R8):
One Row (R9):

System Memory Size:

SIMMs Configuration

Row 1 (SIMMs 1 & 2):
Row 2 (SIMMs 3 & 4):

RAM SIZE Resistors
256 Kbit (R8):
One Row (R9):

speed within a row.)

Figure 1-Macintosh Plus Memory Configurations

Row 1 (STMM=< 1 & 2}

512K

256K
Not Installed

150 Ohms
150 Ohms

1MB

256K
256K

150 Ohms
Not Installed

2MB

1MB
Not Installed

Not Installed
150 Ohms

25MB

1MB
256K

Not Installed
Not Installed

4 MB

1MB
1MB

Not Installed
Not Installed

1 MR

[
m
L]
"
-
LN
.
m
L]
[
TH
L]
am
in
m
.
[

System Memory Size

SIMMs Configuration
Row 1 (SIMMs 1 & 2)
Row 2 (SIMMs 3 & 4)

RAM SIZE Resistors
256 Kbit (R35)
One Row (R36)

System Memory Size

SIMMs Configuration
Row 1 (SIMMs 1 & 2)
Row 2 (SIMMs 3 & 4)

RAM SIZE Resistors
256 Kbit (R35)
Cne Row (R36)

System Memory Size

SIMMs Configuration
Row 1 {SIMMs 1 & 2)
Row 2 (SIMMs 3 & 4)

RAM SIZE Resistors
256 Kbit (R35)
One Row (R36)

System Memory Size

SIMMs Configuration
Row 1 (SIMMs 1 & 2)
Row 2 (SIMMs 3 & 4)

RAM SIZE Resistors
256 Kbit (R35)
One Row (R36)

System Memory Size

SIMMs Configuration
Row 1 (SIMMs 1 & 2)
Row 2 (SIMMs 3 & 4)

RAM SIZE Resistors
256 Kbit (R35)
One Row (R36)

(SIMMs must be 150 nS RAS-access time or faster, and the same speed within a row.)

Figure 2-Macintosh SE Memory Configurations

512K

256K
Not Installed

150 Ohms
150 Ohms

1 MB

256K
256K

150 Ohms
Not Installed

2MB

1 MB
Not Installed

Not Installed
150 Ohms

2.5MB

1MB
256K

Not Installed
Not Installed

4 MB

1 MB
1 MB

Not Installed
Not Installed

(] [&] [+] |5} [&] (%]

NuBus Slots

Macintosh IIx

L= =
L=
T

e

(SIMMs must be 120 nS RAS-access time
or faster, and the same speed within a row.).

Macintosh IT, IIx, and Macintosh SE/30
memory configurations are identical.

Mnk B

SIMMs Bank B
B3 B2
PPU crU
Bank B Bank A
—
il |
) L

Bank A

rg

o) jdl S

il ol | |
System Memory Size:

H
:
:
:
:
:
i
:

4 MR

Bank A: 4 x 1 MB SIMMs

Bank B: Empty

System Memory Size:
Bank A: 4 x 256K SIMMs
Bank B: Empty

Bank B Bank A

System Memory Size: 5MB
Bank A: 4 x 1 MB SIMMs
Bank B: 4 x 256K SIMMs

RAM SIMMs

Macintosh SE/30

L=

System Memory Size: 2MB
Bank A: 4 x 256K SIMMs

Bank B: 4 x 256K SIMMs

Bank B Bank A

T~

Systemn Memory Size: 8§ MB
Bank A: 4 x 1 MB SIMMs

Bank B: 4 x 1 MB SIMMs

Figure 4-Macintosh SE/30, I1, and IIx Memory Configurations

System Memory Size 512K

SIMMs Configuration
Row 1 (SIMMs 1 & 2): Not Installed
Row 2 (SIMMs 3 &4): 256K

Y e ——
ASENNSPNNEENENERY

Jumper on 2/4M

System Memory Size 1MB

SIMM:s Configuration
Row 1 (SIMMs 1 & 2): 256K
Row 2 (SIMMs 3 &4): 256K

Jumper on 1M

System Memory Size 2MB

SIMMs Configuration
Row 1 (SIMMs 1 & 2): Not Installed
Row2 (SIMMs3 &4): 1IMB

Jumper on 2/4M

Systemn Memory Size 25MB

SIMMs Configuration
Row 1 (SIMMs 1 & 2): 256K
Row 2 (SIMMs3 &4y 1MB

Jumper off

System Memory Size 4 MB

SIMMs Configuration
Row 1 (SIMMs1 &2y 1MB
Row2 (SIMMs3 &4 1MB

Jumper off

(SIMMs must be 150 nS RAS-access time or faster, and the same speed within a row.)
Figure 3-Macintosh SE (with jumper) Memory Configurations

Macintosh SE

The Macintosh SE configurations (the original motherboard as well as the revised motherboard
with a memory jumper selector) are the same as the Macintosh Plus, except physical locations on
the motherboard are different. In addition, memory configurations with only two SIMMs (e.g.,
512K and 2 MB) use slots 3 and 4 on the revised SE motherboard instead of slots 1 and 2 like the
original motherboard and Macintosh Plus. Refer to Figures 2 and 3 for the correct locations and
settings.

Macintosh SE/30, II, IIx, and Ilcx

Since these machines use a 32-bit data bus with eight-bit SIMMSs, you must always upgrade
memory in four SIMM chunks. The eight SIMM connectors are divided into two banks of four
SIMM slots, Bank A and Bank B,

On the Macintosh SE/30, Bank A is located next to the ROM SIMM while Bank B is next to the
68882 co-processor. On the Macintosh IT and IIx, Bank A is the bank closest to the edge of the
board, while on the Macintosh IIcx, Bank A is the bank closest to the disk drives and power
supply. Refer to Figure 4 for the proper locations of Banks A and B on the SE/30, II, and IIx, and
refer to Figure 5 for the proper locations on the Ilcx.

Unlike the Macintosh Plus and the Macintosh SE, these machines have no resistors to cut and no
jumpers to set; you need only install the SIMMS in the correct banks and you’ll be up and running.
You can implement the following configurations:

1MB, using four 256 Kbit SIMMs in Bank A

2MB, using eight 256 Kbit SIMMs in Banks A and B

4MB, using four 1 Mbit SIMMs in Bank A

SMB, using four 1 Mbit SIMMs in Bank A and four 256 Kbit SIMMs in Bank B
8MB, using eight 1 Mbit SIMM:s in Banks A and B

Again, it is important to make sure the right size SIMMs are in the right Bank; when you are using
a combination of SIMMs, the larger SIMMs (in terms of Mbits) must be in Bank A. When you are
using only four SIMMs, they must be in Bank A as well.

#176: Macintosh Memory Configurations 5 of 10

#176: Macintosh Memory Configurations 6 of 10

Macintosh Ilci

The Macintosh IIci motherboard layout is somewhat different from the Ilcx, but the location of the
RAM SIMMs is unchanged. Bank A is still the bank closest to the disk drives. Refer to Figure 5
for the proper locations of Banks A and B on the Ici.

The Ilci has a much-improved RAM interface and allows a great deal more freedom when installing
SIMMs. Banks A and B are interchangeable, meaning that when mixing two sizes of RAM, the
larger SIMMs do not necessarily have to go in Bank A. In fact, for best performance when using
on-board video, Apple recommends that the smaller SIMMs be installed in Bank A. Note,
however, that if on-board video is used, then RAM must be present in Bank A.

The Ilci requires that SIMMs be 80 ns RAS-access time or faster and the same speed within a
row. You can implement the following memory configurations with 256K and 1MB SIMMs:

1 MB using four 256 Kbit SIMM:s in Bank A or in Bank B

2 MB using eight 256 Kbit SIMMs in Banks A and B

4 MB using four I Mbit SIMMs in Bank A or in Bank B

5 MB using four 256 Kbit SIMMs in Bank A and four 1 Mbit SIMMs in Bank B
5 MB using four 1 MBit SIMMs in Bank A and four 256 Kbit SIMMs in Bank A
8 MB using eight 1 Mbit SIMMs in Banks A and B

The 1 MB and 4 MB configurations using only Bank B are not compatible with on-board video,
since Bank A must contain memory when using on-board video. The first 5 MB configuration
(with 256 Kbit SIMMs in Bank A) is recommended for 5 MB configurations using on-board
video.

Parity RAM

Some specially-ordered versions of the Macintosh Ilci are equipped with a PGC chip and support
parity for RAM error detection. These machines require parity RAM. SIMM s for these machines
are nine bits wide instead of eight, so there is generally an extra RAM IC on the SIMM. There is
no difference in the installation of 256K x 9 or 1M x 9 SIMMs.

Macintosh Portable

Memory expansion on the Macintosh Portable is different from other members of the Macintosh
family since the Portable uses memory expansion cards in place of SIMMs. The base Portable is
equipped with 1 MB of RAM on the motherboard and has one RAM expansion card slot. Apple
currently supplies a 1 MB memory expansion kit which takes the Portable to 2 MB total. Apple
and third-party developers may produce higher capacity expansion boards (2 MB to 8 MB) in the
future.

Since the Portable has only one RAM expansion slot, you may use only one memory expansion
board at a time. This limit means that a 1 MB expansion board would have to be completely
replaced by a higher capacity board when it became available.

Total RAM for the Portable will always be 1 MB plus the size of your one RAM expansion board
(if installed). Refer to Figure 5 for the location of the RAM expansion slot.

#176: Macintosh Memory Configurations 7 of 10

#176: Macintosh Memory Configurations 8 of 10

4 Mbit DRAMs in Revolt

When the Macintosh II was originally designed, Apple engineers intended for it to accept large
amounts of memory in the form of 4 MB and 16 MB DRAM SIMMs. That was in 1986, when 1
Mbit DRAM was difficult to find and the higher-density chips did not yet exist. The engineers
anticipated the pinouts of the yet-to-be introduced 4 MB SIMMs and provided all the necessary
hardware and address multiplexing to allow installation of these parts when they became available.

Woe that Cupertino is not Camelot, James Brown is in jail, and 4 MB SIMMs do not work as
advertised in most cases. This is the story of the Revolt of the 4 MB DRAM SIMMs.

Preliminary Notes

Before diving into the problem with 4 Mbit DRAMEs, there is some preliminary ground which must
be covered.

First, there are a couple ways to construct a 4 MB SIMM. Using old technology, it is possible to
cram together 32 DRAM ICs of 1M x 1 density. Using new technology, it only takes eight 4M x 1
ICs, resulting in a much smaller, lower-power module. If a 4 MB SIMM is of the large, so-called
composite type (i.e., it is constructed of thirty-two 1 Mbit ICs), then everything is fine except on
the original Macintosh IL

This exception is due to an undocumented feature in the ROM firmware shipped with the original
Macintosh II. Unfortunately, the original Macintosh II ROM startup code does not know about 4
MB SIMMs and dies a horrible death before the cursor even appears. Thus, a Macintosh II with
original ROMs is limited to using 1 MB SIMMs and 8 MB RAM maximum. Subsequent
Macintosh models have revised ROMs which recognize 4 MB SIMMs.

A Macintosh II CPU can receive a ROM upgrade enabling it to accept 4 MB SIMMs. This upgrade
requires installation (strangely enough) of the 1.4 MB SuperDrive package. This requirement is
presumably because the SuperDrive package includes the Macintosh IIx ROMs, which can handle
4 MB SIMMs, but which also expect the presence of a SWIM chip in place of the old IWM.

With the SuperDrive upgrade, the Macintosh II is on equal footing with the Macintosh IIx. That is,
SIMMs made exclusively of the new 4 Mbit ICs still won’t work, regardless of whether you are
using a Macintosh II or IIx; therefore, for the remainder of this discussion, Macintosh II is used to
refer to not only the original Macintosh II, but also the IIx.

The 4 Mbit Problem

DRAM ICs are now available in 4 Mbit density, but they come with a very nasty surprise. JEDEC,
the committee overseeing the standardization of new solid-state devices, has added an additional
built-in test mode to high-density DRAMs. The test mode is invoked by a sequence of electrical
signals which was ignored by earlier-generation DRAM. The crux of the situation is this: under
certain conditions, the Macintosh II unwittingly activates this new test mode and large amounts of
memory become very forgetful.

More Specifically...

Those who are interested in the specific phenomenon occurring within the memory ICs should
consult the detailed technical data supplied by the DRAM manufacturers. This Note only explains
how the Macintosh II offends this new feature of the 4 Mbit DRAM, and hence, what might be
done to work around the problem.

#176: Macintosh Memory Configurations 9 of 10

The Macintosh II uses /CAS-before-/RAS refresh cycles to keep RAM up-to-date on its contents.
For 1 Mbit DRAM, the state of the /W control line is ignored during this type of refresh cycle. No
longer. DRAM of the 4 Mbit variety goes off into test mode if /W is asserted (low, so that the
RAM thinks it is write-enabled) during a /CAS-before-/RAS refresh cycle. The problem with the
Macintosh II is that /W is the same signal as the MPU R/W line, and if the MPU is writing to an
I/O address or a NuBus™ card concurrently with a refresh cycle, all the conditions are right for a
waltz into test mode. Unfortunately, this condition is not all that unusual, since video card
accesses qualify.

The Salvage Process

All is not necessarily lost, and although the situation is ugly, there is still a way to use 4 Mbit
DRAM ICs to construct 4 MB SIMMs which work in the Macintosh II. A solution lies in the
addition of a ninth IC to the SIMM. Programmed with suitable logic, a high-speed (-D or -E
suffix) PAL™ on the SIMM itself can recognize and intercept /CAS-before-/RAS refresh cycles
and set /W appropriately before any damage is done. More or less, the PAL becomes an intelligent
buffer between the MPU read/write line and the DRAM write-enable lines. When the PAL senses a
refresh cycle commencing, it holds /W high, ensuring that the ICs are not corrupted by the
potentially dangerous processor-generated R/W signal.

What the Future Holds...

It is unlikely that Apple will recall the affected machines to install a fix or even change the design of
current-model Macintosh II computers produced in the future. New members of the Macintosh
family should correct the problem, however. Note that the Macintosh SE/30, Icx, and Ilci all
address this problem. There are currently no specifications available for 16 Mbit DRAM; therefore,
it is unknown at this time whether any current Macintosh models will be compatible with these
devices.

Consolation for SIMM manufacturers: SIMMs constructed with an on-board PAL are not
necessarily Macintosh II-specific. SIMMs constructed in this manner should work without
modification in any application calling for 4 MB SIMMs (except in the unlikely event an application
requires the new test mode).

Further Reference:

» Inside Macintosh, Volume V-1, Compatibility Guidelines
e Guide to Macintosh Family Hardware, Chapter 5, Macintosh Memory

NuBus is a trademark of Texas Instruments
PAL is a trademark of Monolithic Memories, Inc.

#176; Macintosh Memory Configurations 100of 10

Macintosh
Technical Notes

g

Developer Technical Support

Index October 1989
FoASINAL ... veereiererieersrrensrsresrsssssrerasssssreansasnsen 256 ADADAVEccvvrisrsseeimmiimmenniiirrinnnireaenna 36, 108
G _INIOD].ceceeiiriiieiiecee i sicrrnes e et 105 AddReference.........ccovveeirreenemmsnsisinnnnseiieiininniininnn, 2
%_MethTables.......cccccceiviiieeiiecniinnres 93,105 AddReSMENH......cccocrveeeniiiiiiriiinecineieenesennes 191, 198
Fo_SCIPIOCS. v eeiiireerrecrccnrressssses s s enseaenrrrennns 03 AFP..iiccecceeeernne e v e aa bbb e sr e 195
030 e e e 129,230 Alarm ClocK .c...cvvivvnriiivnreernereeeecircneeecncenens 85, 184
2lemsBBL.....coenc e 2290 Allegro Common LISP..........ccooeiiviiininininininnnnan. 231
“MCEBBRL ...oeniiiirieicene e rece s s se e 146,229 AlOCCONHEireeeeierrreenmaannrersseenreenssssrnsneensasans 218
ATP dIiVer......ccoieeeeeiiireeeeeeenraeesraesenneesiens 224,250 alpha VerSion..........oviecemniiciicnn s 189
BOULAVEr. ... 102 alternate SCICEM.....corveeeeereerrersrinneerecanreeesessnnsares 113
MPP driver........oovvvviimiccciincnnn 9,224,250 aliernate screen buffer...........coocevvmrvneencnnn 2, 126
Print driver....... s, 102 alternate sound buffercoooiiiiiiniiinnnnnns 2,126
S0nY dOVEro e 102 ANSL...ceriieiiiirrrrarassrressasreesrce e aernan e ssannas 208
KPP AMVETeeeeeeeeereeeereernrssisrsssesseenmesissessssennns 250 ANSI Coorririccnrerenr e seee e eeee it 246
TAMB Lo e o 230 APPAEVH. .o e 158
144 MB...coiiiirrreceeiriiiiiecesee ittt sessenessarnnnnas 230 Apple Deskiop BuS......cimiiiiinnniiiiniineniinns 206
128K ROM....ccoiirerrreerrvemrnssecninnns 198, 224,232 Apple HD SC Setup....ccoocooreenrmereicssniinnns 134
24-Diliueeeerseecnnrenrinrnnniessessnease e 212,213 Apple Mentl..criciiinniieericnereinreneean e 85, 180, 184
K2 1 U S OO PP PUPUP O 212,213 Apple Sound ChiD....cvceccrineencciinrecniiiien 19, 230
32-Dt BUS...uvvveeerirnninsirrnrnrrsnnnsrannsannranensennnriss 230 AppleShare114, 115, 116, 137, 165, 167, 186, 216
32-bIt Clean.......oovvirernnesirnnerrrrmnirsasse e rennananases 212 AppleTalk..................9, 20, 118, 121, 132, 133, 142,
32-bit MOGE...ecvirrricrrrrsrmrrrrrrssmse s srsearensanae 205, 228 e 195, 199, 201, 224, 225, 250
32-Bit QUICKDIAW ..o.vvveeienieerrenensiismisnssseseesaennes 193 AppleTalk Filing Protocol.....ccc.evvviiunninniiininnnn 195
4 Mbit DRAMS......cooevvreevisrireccnnmneemmenseresancnnnes 176 AppleTalk Manager195, 199, 201, 224, 225, 250
400K diSK . .ceenenrnreereiereneeranccsreeeriasrissneras e eeees 70 AppleTalkPhase 2ccooerrmirinninnnniiiiinnans 249, 250
68000 PDS ... iiiieriiieeriansr e rnesrcsss s e nbannasns s 230 AppleTalk Session Protocol.........coceerevviiinnncinnan. 195
68030 PDS ... ieevivrrrerremnanrememrasssrsennssnssssrrenes 230 AppleTalk Transaction Protocol.........c..oeeeiiiinnne 9,20
BOOK diSK..eireeunreerrrvsnssrermccssmeenssssssisenmmernnsrrrrnees 70 AppleTalk Transition QUeUE.......coccviieniiiseisraneas 250
@ OPEIALOL......ccvviivnssirrramsiirrrrrr s bertaennennnns 42, 117 Apple_Driver.....ccooiiiiiiiininiiiriinnnnr s iecccessninns 258
AfUX e ceriiriiiisrsenininninrrseesssssrsennsssse s aesnens 212,229 apPIFONL....cieiiiiiirenieisnrcninei e aee s snasesas 191
AJUX TOOIDOX covvveniiievnierennmmareennicssnvssnsssrennnss 229 application fonl..........cveeimcceccinninnnnencnnn 242
A iriiriiiciie i ctceeeee e s erae s s e e s e nnna s 228 application paletteccecvvuiiiiriininiinenesineenniinnnn 211
A5 25, 136, 180, 208, 239, 256 application Signature..........c.ccoveeveeeceeernrennnnnens 29, 48
ABPasINHfoooeviieiies e irses s s evvasnes 132 APPIZONEcocorieviininis e e e e 2
ABLAZE ...ttt e r e s e 9 artificial intelligenceuvvvriceieriminiee e 231
acoeptChildDiedEVEntScocevmmeivieneiesereenmnannnen 205 ASC e e r s 19
acceptSuspendResUmMEEVentS........coiiiiineaseerrasneaes 205 ASCII character code.....coovimicriiiiennernniiinimnresennens 229
ACCRIN ...t ettt e 248 aseXUAl......ccooiiiiiiiiie 247
ACL ..oovvrrreeeereecenniunssssaseersesnnmansnsssrasssessnsnanes 231 AS P e e e e s e 195
Activate Palelte......ccovececeeeernrerrsinesssinsssanns 211 ASSEMbIY .ovveeiiceeiie e 200
ADB....coeiriiieirnnrrrrssssscassasaennrers 143, 160, 206 assembly language..........cccoeviiiniiiininiininneninnens 223

DOOL PIOCESS ... euuunenremsrisisssisasnntsnrsansneennanes 206 asynchronous driver ..., 249

(oF: 1 1) U ST TRN 206 asynchronous serial communication............c.cvevnne 249

driver installationccooecevviiiiiinnierinnneeeeen. 206 atDIVIVErsNUM......ceeimiccririeeeccceerrresrrrserrerernnes 250

MICTOCONMTOIIET ...veevveeee e vevensceeniscisssnessrenenen 206 ATP...oec i e et ee s e 9,20

TEfETETICES . .o veereeeeervvvan e s ss e e e e senanna s 206 ATPGetREQUESL.....c..oreermerrreremrenieiisiaiisssssannnnnnss 20

SEIVICE TOULRNE ...cenvvernnriineenen it sinsusinsernnaaes 206 ATPLOA.........ccoivmriirnisicemnireeiccrennesaans 20, 224
ADB INMETfACE ..ot ceeeeerreneainmsinssassrenaersannssrrsrssanss 206 ATPPBPIN ...ccvvirreie e esstnseeaerassesnans 199
ADB Manager.......cocoviiiicniminncccsinesiseacsnesinns 206 ATPRESPONSE...cccerrrieerrrsinsssisiiiiisccissaanreeenaes 20
ADBREIRIL.......coveeererrierren s e e 143 ATPUserDala........cccevveenrccircerienmmenieeniesnisssnannns 250
ADBS ..ot eene e e een e b ssaeaa e 206 automatic style subSHIULONuvveemreniiiiirearansns 198

Index 10of 13

Macintosh Technical Notes

F:TH T B ¢ Tt < 196
auxiliary window 1ist.............ccovvivniiiiiiiinnniinnnen, 227
J23:T00 L0 [SRR 73
background........ccccoiiieverinnireeee e e 158
background Process.......ccccveerrmiecrireenreeeeiatesacananns 180
BOD ..t e 189
D5 0 N 2
beta VerSiOMN.......cevrrvvervirirerriisrisisicciseeenemnmneecennns 189
DItMAD «.eeeiiiieiraeeee i eerrarreerrrees 41, 117, 120, 193
BitMapREN.....cccvvreeiiicrieiiceevreee e everaresseena s 193
B#tMapTOREZION ..cocvverreernnreriemreiineneisscinerennsenens 193
Black Lectroidsccvvviiivueeerremnnseermerinsiensssesseeesnes 247
blessed folder......ovvuuevviienineiie e, 20, 67, 129
DIOCK SEIVELS .uvvvivenneirnerrecinansesssssassasisinsesnmnneenns 20
BNDL cttiitiiiiiimmce i eeree e s e smmnn srasersen s 210
BO3BAr.....ceiieeeeeieree e e re e e v e s 139
DOATS ...ceeeeccer i rr e e e e raas 234
BOOL BIOCKS....cii e rrivcc s rraresseeene s 113, 134
BOOL LIME....iviiiiteeeecirrirrrecrcreeeesseesree s s s s s s s s senaas 247
BOOIDIIVEccvniiirriensrreeiinrarnrrensserermnsiennsesssraens 77
BOOLNE 1vvvvarirrnrnerreerreenemmeccesssaeesranmeserreresneneenes 134
brain-damaged.c.ocoveriiir i s 248
break, Serial........iiiiiiiciicceerr et 56
BSET ... rrr e s s e nraaa s 2
2211 i ¥ U 2, 81
bug
AJUX TOOIDOXccvverrivrreerriensiiranrinemenessenens 229
Allegro Common LISP.............cccovmriiviineninenns 231
APPIESRALEovvvereeiirreriesrinrrerrren e neens 137
ChangedResourceveereereenenencessreenrsnenn 188
FCBPBRECccvvvcierrvernirerversiennnsssessnssssrnennnsns 87
GEtVINLO ..v v vvvvvrecerrmin e v ee s eesmnasseerbenaes 157
HyperCard....cocoeeeeeeaeaiiririiieie e 169
LaserWriter ROMScccovvirerrorerrirannersenirnsnone 123
MPW . oiiriiirerninimnsnesssrsiremmirmrensrrernssrsssssssnes 200
| 4 €7 T3 | T 173
SO e 96
SCSIManager......ccccveeieeeeeceiicsieereneseeneesereees 258
TESCIOl..c e errreernnee e aee b s s 22
TeXtEIL vvvererennvinnererirriierererreeresssasnnes 82, 131
WalNEXIEVENL ... ccovccvnirrrnirrirrrnrrrrrscrnsseennsren 177
bandle.......ccooveveiier e 40, 48, 147, 189
BUS LOCKINE . .uvvvvrirereirrieiererinsirrrersisensssesessnssens 221
C e 164, 166, 200, 246
CABIE ...t e 10, 65, 144
CACRE e e 117, 261
CacheCom.. ...t et r v ee e 81
CACKIME, .vvvieeeriviireerermrrrreranrerrerresisrrersreasseraserns 81
CACCRENS ..o et reeevnrnr e e b srassis e 212
CallAArciiiiiiiiniineerr e ce e e cceeern e eereeecn vens 250
............................. 158, 180, 205, 231
card power alloCation..........cceecceeceiiccreccnrecriraensns 260
CAMTS -.uvvevevevrrnerresnsresessssnasesssrasssssssssstsssmonnssnnns 234
L0611, (v U, 218
R ettt et e rs e s s s ae s s s sraa s s inn s 2
CD ROM, disc fOrmatscecveeeeurneirereensennnnnnns 200
CD ROM, Foreign File ACCESS......ooevruvererreerennne 209
CDROM, formats..........ccocerriviiinnivirneicrrnnaneens 209
CD ROM, High SieITa........covevrviiveeiiienmnierimnnnnnns 209
CDROM, ISO 9660covvnnrrriinier e ccnnaanas 209

CD ROM, Primary Volume Descriptor 209
CD ROM, Standard Identifer Field........................ 209
CD ROM, Validatorcccvvvvmmmenirnrevrinnnennn, 209
CDO0L ...t rv e rer e e s es e 209
CDEF...ciiiiiiiirremiiicseiesivenvinn i enne s 196, 196, 212

MESSAZE PATAMECLETcovvrrrnnrrrenrenneeeerransenseecenns 196

PAram PATAMELET vvvrvrerrrecarererrensarraremsosnsrnnes 196
OBV ceoirencirceitttie b rreerr e err e e 215, 251
Cdev MESSAZES.....cceececreccceeeeririeeerrerieressssnesssseenen 215
COrafPort....cooocever e, 120, 211, 259
ChangedRESOUICEcovecvrvierirerrnnrereeeessnsnnnnens 188
Char2Pixel.....uereiriceveirerieircccmere e e e 207
CharWidth ..o e 26, 82
CheckRSIRecord.........ccoovimmmernnmnrniceeeeresneeennennns 173
ChECKSUM.....ceeiiicrenr it 7,258
CRO0SET. . cn e e sae e aa s 197
ChooserBilscvuvivisiienrniriirercisicies s eneerrennesneens 250
CINfOPBREC.cvvvvveiiiienrieerieernicissseeeeiseeneeeneans 204
Class Info Table.....ccccovveiverivrrrrrvieereensesnnenne 239
clearDeycoiiriiiiiiee v e 215
click-click mode........cceeuieeeeiriniminiiirceecieee e, 260
CHKLOOP. ...t e sans s sivminns 82
ChkSIfT ... 127
CHPIEION ... e e veenr s eeees 59,712
L0311 1) 1o TP 59
L1 56 S 231
ClOSE LrANSIHONc...ocviiviiirivitviemrinvrrerreareersennares 250
CloseResFile......ueiiiiiiiccnecrreiceereerrsscenrecenseees 116
CloseWD......coiiiiei i et ner e 218
o1 S TS 120
L) 31 6 AU OO U URTRT 244
CODE......iiimririiriii et st srn e esssesessr e s 220
COUL TESOUITESuvevsiairrannnrrrraserreenessassasssanansanes 228
CODE SEEMENL...ccccccearnnnneerreerarrrrrrrsreenerrserssssnes 53
code, self MoOdifying.........cccccoceivimvverirevrcrrverenens 117
COLOL CLISOT......cvvveeeennininrrrennvvaraesnsreeessassssnens 244
COlOT CUISOTS.....oveerrrrrreecrrevecnrecsnsnrreersrreceeneeanees 229
color dialog........ccoviviimmmniien i 231
color look-up tablecooveiiieiiiiiiicc e, 120
COlOT MENU.....coneeeeeeecrre e e 231
color models........oveeeeericeiiiiir 259
COLOT PHNLNEcovreeee i iire e ieeenareerensnnseeee 73,120
Color QuickDraw..... 73, 120, 129, 163, 230, 244, 259
COlOMIZING ..ot ivvriirisinir i cnee e e et e 163
Common LISP Object System.........ccceveceiireennn 231
COMMON SIENAL. .. iicviimmrriirererrrererrrercrrrresereerenns 230
COMPACE AiSC..cvvrrerrinerrrrenrrirrrinrre s s 209
compact disc read-only memory........ccocevvereeeraseres 209
CompactMem.....c.covvreeecrirsreenrriraecccssnnrressersasesens 51
compatibility............... 2, 25, 83, 103, 117, 126, 129,

......................... 155, 156, 176, 212, 227, 230, 232

HES oottt rctnccrrecee s e ensemreaeee s annas 44

large-screen displays.......ccocvecccriiivincinnincnnne. 100

Standard Fileccoovvnviieviniiresirronrienrererinsernnas 47
completion TOUtiNeccovcireiiiiiiceinienenerrnnnnees 180
condition COde TEZISIErucmmeumceemeeeernrnrerrrreeerrens 2
configuration file........ccccoceeevcimineereneiiieccieeenen,s 115
connector, external drive ... vvvineciiiiniiinin e, 10
control definition functionscc.cccevvveienneneensn. 196
Control Manager..........cooeveveereeervennnenn 196, 203, 212

20f 13

Developer Technical Support October 1989
Control Panel.........ccooveveveenneerirccinnennne 134, 215, 251 limitations........cocoimreerreemreereensierreesrersesnernnenns 210
Control Panel Device.........ccevvvvvicinicenneennens 215, 251 deStRECL...ciieccrreeee v raneees e s 237
ControlHandlecoovciiiiiiiiiiiiiccecreree i reenns 197 development VErSioncccevevviiinrnnirnnnnnieansnsnens 189
CONMIOISeeeeeccc et e er v e e e s et s ae 197 device cOMIOl €NIrY.....coovevveerrerereereaerssessrmnsrennns 248
COPTOCESSOT cevveererunrasennecnrernerrasesreennen 229,235,236 devicedriver......ovnccinieennenneas 56, 71, 184, 187, 258
COPY PrOECHOM ...ceeneveeenneececeeeenseraenrennmonasseerronns 117 Device MANagerc.cvveeeerreeereeeneeercrnscnsasnes 197, 257
CopyBitS ..c.ccerereieieerie e e 41, 55,163 device packages.....cceevveniciiceeereeeciennnnsensenncassanees 197
COPYDIRY ... e eese e ae e e 215 QeVICCSCIVETovvrrerierrnreerreernersanssasssrssacsserannaenns 20
L00) 1) 4 P U 163 device-independent printing.........cccoeveerecernens 122, 152
CopyPaletteccccvvniieemirnreriiiiirseresess s e 211 dIAlog......oceeerccn e e e 184
Coral Software..........cvvrvvvivinsinnsinnninnnn. 231 MOdeless.....ccoomiunniiiiirinice e e 5
COUNMTYCOUEcevevereneeeirierraeereceaesreee renannannaes 189 dialog filterccoveveeeieeeeeece e erve e e e er e errreeeees 34
CPUFIAE......cocvvrmiriirrerirenrissisissisesssnsssssnsssssnssans 2 dElog hOOK.....coviveeeceiiir e rreir e e 47
CreateResFileccvvveiisnnineniinieiiminisisn, 101,214 dialog item.....cccoomriiiiiiieii e 112
CTRALOT.u e vruesrensnsrensnssansnsrrasnsrsasneenesnsennnennrsne 29 Dialog Manager.........ccccceeerecrrecrnicrccercnnnans 203, 251
O PSR 56 dialog uSer iemrccevereiierreernrinsias i sraraeseerans 34
CurDIrSIOreccoveeievccrere s eecene s s e e e reneen e 80 DialogSelect....ciiieiiiiiiiiccrinirenineerrrereenre e s 34
CurrentAS........ooovieeiiiiiiicccer s e ennana 25,136 DIBadMOUNL......cccooiriiiieiiiinircccceccennnrrennanenesene 70
CURS i civvrniinmmmrraismirrsssssiansas s siasnnsasassns 215 DIICreale......ccouvumeriiiccrrirnrnsssrssrrrssesrssersannnnnnes 218
CUTSINE o eivvvrvennrrsrssresssnrssmmmmrssssassassssessmmansins s 244 directory ID........ueiiii e e 226
CursOr Ky COURS..ovvmviiiviirninirisiii i innaae 229 dIreCIOTY NAMEcevvvreeenrernnrerrasssnssasseosmssanensseenas 226
CUTSOTIIEV .ovvvvevsrrieerrersennerssenisnsssassssessnnsnnssnsnsses 215 DirlD....ccoervrniveiieceeeeeee e 69, 77, 140, 238, 246
CULDEY .oiivvvininrrsssenissnnnnmrisnssis e s s eaemn s e 215 diSCeuiiiiiiiiiiiicire et s e e e e 205
CWINAOW ..ccceeeecreevirrccrrceccccceareese s cesemr e reas e 211 diSCIPUDE......cuivvverniiriansersccninnaenesnessreaseaas 117, 151
CWIRAOWPIEovveeevvieevrercernvesnnaerrerncesensserennns 120 disk drive, [Oreign........covcvvirmreoreerrimreescsnesssscnaseas 28
Dashedlinecccovivivmiirmmeininnsirecnsessnessnssee 91 Disk First Aid.....ccooovrreerrmmeerrinsriersnmresssensen 94, 134
DashedSIop....cooiiiiiiiirii e 91 disk fOrMALSevmuerenerrreerenerernncrereereerranresrannas 230
data cache.........cccceeeeeveevivceenrerrenee e ssssanes 261 disk initializationovvvviiiiniimnien e, 70
Data FOrKcccviineiiimmmmimmmmmsine, 203 DisposeASWorld.......cccovueivnnirecireeniiennenncrrcriones 256
Data Initialization code not called 256 DITLcooeiiirerisserriinmisis i sseesnenassimesseesesnnes 251
data PETSISIENCE .o.vvveiivivreiimsirasssineassserssissnresansss P T V)V 7 o S U 70
(4P 12T o R 20 DIZCOPY...cccoceirieiii e e s s 215
data SITUCKUTESo eevaeneeenennenannennnasraarsnnsesarenns 227 DIBCUL.ccciiieieieieciiieercirn s rrseesneessesen s isssss sane 215
Datagram Delivery Protocolcc..cciiciiveinieiannnnns 9 DigDelete ..c..coeeiiiiiiiiiic e e 215
dataHandle, in WindowRecord............ccoovvnninnnnnns 79 DlgPaste......cccccinriiiininiiiinii e e 215
DB-19...ciiiiiiiiiitierieteninerereir e en e ae e e reeserees 10 DMA .o 221, 261
DB-25 i itiirrrerareriesieiisteiceincs e ane s eeressaan sreas 10 DMA burst transfer........cveoivinnn, 230
DB-9..uiiiirireerrirmnescrennaesnrssnnmssnerssansnsestsrenssosens 10 dNeedTimecoovvevenreririonssiiinrroiasseeseeenmesnssneenns 248
ABOXPIOCcoeeieereeerenenererrsrnesnnrmseresrsssssssssssanns 180 DOCArel......cccceeiiiveciicceiineecsessrnerrrrrensseeraeessenns 82
DCE..cieeir e ceneas 71, 108, 187, 248, 250 DODIaW......ccoiiiiiiiiricenieerrrsernaans e s s ereseaes 82
ACHDIIVEL.....coveeiiiriiisimrrirrr s srsrrene e 71,248 QOFACC..ccmeerricrrrrrccirss i s ssessa it ssrne s 207
GCLIPOSILION......cviisvirrrrssrimnnrrrrrnie s s 187 doTOgEIEcoeiivviiiniiiis e s e rr e 207
DCHQHAT......cccoieiirreirrrriierrenrierreees e s erse s nnens 250 double-sided diskoeviiiniierrinniiinniiniiniiiieiin. 70
ACHUREINUM......ceeiiiriiiieirrni s senes 56 downloadable fONL.........cccocoinviirrimnsiiesrenninn, 217
DDP....coecetvsrimirreissnteriniarss e sssnissresiosassiansneenas O AODIVEIZE .o e e e s aeee s 36
dead Ke¥.....ooeeeerrrircccccirneeeennreree e e e sssssnneneeeees 160 draftmode.....c.ocenneireennrcciii e 72
death by ROM........cooviniviiiiiiinnniinnn i rreess s 117 DraftBifS..cccccrvvremmrienniiins et 128
QEDUEEET ..ovvverinrrcrinnreraneerrssensas e sesasrrne e ssannans 145 DragHoOK.......covereeiieiiriccieeeecncerenennernennnunnssose 247
debugging......cceeeerrmrecirreccrnannnenn, 7,42,51, 151,235 DRAM.....ccor s e 176
Declaration ROM.......ccovrverriinreeviseniiiinmonninnn 230 dRamBased............ 71
deferred (asK........cccoveeeeeiinrriresirsneccenrecneneenenneens 221 DrawCharcocoeevcerimnirmviesrrersssessisrissssssasases 26
definition procedure...........ccccccrrererernnrsserrssenennnss 227 ArawCntl........ooeeeeeieieeericecceeerrree e svmnrre s s seasasns 196
DEIAY ..cocrriieirsietirirse s iarr e sssstsres i sss s asssaes 2 DrawControls......c.cccriivvceriimecmmuninnccinsissenenennnnnn 203
dereferenced handleooooivviveiniiecininnrennnnasnn. 232 ARAWING c.eeeceenneecrcerreerrrerrne s resra e s 60
BESIRN 1o vvrnnreerrnnneeerersrerocnsncarnnmansseesnnanrscennannann 227 ON the deSKIOP «.....vvvvniiriiiiiiiiiiiias e reenns 194
deSk ACCESSOIY..nmurerirrirrenmrernnscassineecendy 23, 184, 248 drawing iCONScooovviviiiiincciinn it s 55
DesKHOOK...oo.ovvieiiceeeccnnerncccrrrnnae sretsmsns sassan 247 drawing off SCTEeN......ccooriiiiiiinirciierccceenas 120
DesKLOP.....cceieveenee e ecccecnnnneeeeeeeeees 194, 210, 247 DrawPiCIUICccceenvvirvevveciisrrosersaessresssesnnees 21,59
UPGAtNG MOULNE ... everrreerreererneeennrsansscanessneranns 247 DIaWSINGovnnreerreeeroeeieceeeraerresesssessnssrannanans 26
Desktop filecco.cveeerimmnccinricrienanne 29,48, 134,210 DrawTeXl....ccorvvrrimmnrisiierimimismmiisi e 207

3of13

Macintosh Technical Notes

Arive NUMDEE ... ovieviivrerrrecesiriasrsriria s ras s saassaess 17
ARVE QUELIE enrenne e sisssa s snsssnenas 36, 108
31141, SOV O SOR 71, 108, 221, 248

SCTHAL . veevuerenrseiencreessssssrrnsnesenrseenssnnrssssasssnnnns 56
rAVEL MAME 1 .vecenereveneenrenrrasameseassrensassrsransrnnssnsss 102
drop folder.....coiiiiiiininisesc s 165
DIVQEL....ueeeeevriiininnisnneeeenmeeenmisssssstntsnninaannmennens 36
5] 017 401217 T U 108
DIVIREIMIOVE. .01 iiireienrrennrrmrerrissssnsersssnrisssnnrrnrisss 108
AUMPCOAE....ennrrreiriiimrisieeseascnneererisesssesssnnsnins 229
EDHSK AIVEL . ..veeeeeenirsrrnsenrersenssenrerissnsssssasansnes 255
EDSKS . .evesennermacrnsernneensnnssrnsssnsssrsssssensasrsnansens 255
BIL covvvrrvsreeerensrssuseseensessnnssansesssssacenansarsannnansoses 84
EOUTEXE covneeeeeeieinssrresiesansonanasennrsassnesnensessnnssnes 251
EJECtiON, PIEMALUTEovvvererirenssraransssersosisnissiens 106
ElectroniC DISKS.....ccveveeerrermrensesrasmsiiresassrinrmannes 255
EIEMSB8L oneeiieeeevarcerreessiierinrsenmnseenassnssssnansns 146
L 171 B0 2 14 11 S RO 127
EndFormsPrntingcccvveeeeemmeeesrmiimsanrmmmnaneni 91
EnumerateCatalogccoveeriirrueninvrerisianisinsesncnnnes 68
eNVOB030 . e ieeeeeencrrevrseerrreernarsres s st raan e 129
envEXUSOADBKDbA.........ovveivivmisemncirin e emsans 129
CNVIFONSVEISION ...uevvvesreenraseeenseranrrrsiiassansarasrenss 129
ENVMEACIL .oeeeeeeiencesienresnscnisansensnearssisssnssnnsennans 129
ENVMACTICE . .1 cvureenreerieencmnrensenseassersarearrirrsssansaes 129
ENVMECIICE o1 vveiereeiirernsenrbesaesansrssssseeesssssssannnnns 129
P12 7a0% 161 1 b SO SO PPINS 129
ENVPOMADIE i vserirevnrran e resssreracnsnsnsrasrnssasss 129
envPOIADBEDAccoovvvrrii e enerresiansanrnansennes 129
envPOrtISOADBEDd........oovicrmmiicncrriraceennianenees 129
ENVSESD .o iiiicieireereniisrerarasssrsssssssrsrisrrrnnissasaes 129
envSelTOOBIZ...covrierimrniiirrirrnnenr s 129
envSIAISOADBEDAcocovnveenrirenrensrisinnencnnnnas 129
B ooniivisrreeessesnserensserrrassrssssssssssosseessasarnnsianes 188
ERIK c.vennveesvesssesisennssneerssorasssnnsassssssssbossseanaasae 126
ELHErTalK..coiveieeeecerennerresseamnrrrransassnnsnsanaarraness 250
Event Manager........ccccommsnismmmmmaiisssneiisina 202
EVENEL MASK..cvvviiirimeresssnrreressssrosssssersmmrressosansnans 202
EVENL, NEIWOTKcvvrerencrriennrrnsbisiensressssiiennnaons 142
EVEMEAVALL ccovveireevrvreecnirensenncrsssiiosmsassenssnenniies 194
VAL oo eivsseeeineseeesensssasansessnnsennanssnssssssrsnsnsenrenns 247
CXCEPUOTN .ceveerrrreerrssarrerrssrsssesressssnamsssssasasnsesnssss 2
exception handling..........oovviieecnnmnnnnnnd 229
EXILSCTVET o veveeernernssissssssersnnnnntessensssrnsnsssnssnnressnss 91
eXPanSioN CArdS......evrreeerirnereeaisinarsnenad 230, 254, 255
expansion IMErfaceoccevvreeciiismnirmiinnnnen 230
EXIENAE. .. oooe e eivveeemmeerrinenaarssssnsaesssnenrrernsrsnsnsses 146
Extended Keyboard........cvivonmneecnniccenranninenne 206

LEDS .. ciuuieetiersneeruressannsenrssssssssannrmaenssrsssnsnes 206
EXIENAL AEIVE ...eeveeecieirerrrrr e reenracnasarenreasansanterase 10
faceless background 1askooveereenieccinsiinneannns 205
Fake DANAIE . . eeeeevreeeecrrrseenrenesanenesrorssansrasansrenes 117
FBSYEIT.....tiiseeciuninieesssinnnnsssessasnasassssssnssnnns 180
FOB o.ioveiieesttnseeransernasransssssesenssssnrannsnrsssnansans 102
FOBPBREC . vcceutiviiecemseressesnssssansscsssnnrrertsssssnns 87
200 1 123 2T OO PPN 102
FOEDuresirevmnnseennssescenrreeressrnnnssassssassnsesnanrnrssnsnnnes 198
FACOMMEIL . eeunvseevsiiesisirenrrenrrressssenassrsssnssansnnnes 29
FAFIARS 1 1eveeemaernnsersecasnnsssseaconsnnsssinnesassensaransssses 40
FDHD ..ooiirieeiaeiincesemssssssrnssrunesresrensssstsssasassnnsrs 230

(713, 1 | PP PORPRORIPI PRI 246
FEALULES. covivrrrennvrrernnnnrresesennnsaissssssssssanseenarnnnrises 227
17128 41 L1 DTSR UU U OO O 47
File Manager.......c..ceuenes 203, 204, 218, 226, 238, 246
fIlE SEIVETS ... vevemscecencrrnnsaemsncrinrcesinsarmassasnssrnnonss 20
FILE SIUCL ...ceeeereersssenssoennesmreemntmnssnsnssassssssannes 246
file system....... 24, 44, 66, 67, 68, 69, 77, 81, 87, ¥4,
........... 102, 106, 107, 108, 130, 140, 157, 179, 190
fUCNAME ...eeiirenererrermneeseererarrrbrbresanannassaneennass 107
flter PrOCRAUTEcorrecrsiieeis i srnee s esssssnsneenaas 34
FIEIPIOC ovviisiveereneereeenmeresernmmsnsasisnerneesssssansas s 203
FiNADIEMS ...vvveereenmeireraeessersassssnsssasssronsaranssseses 112
Finder.......oconmnne. 28, 40, 48, 114, 116, 126, 134, 147,
....................................... 189, 194, 202, 205, 210
file COMMENLS......cooecceeemrriireniiiiiirnrrrnessesseees 210
FLAES «.cvveeeveearrivniiesiisnnsrarer s ran s e e s e 40
1aUNCHINE . ooiiiieeeeecmttiiess et sss e 126
SUBLAUNGCHING . oo vveeeerenrinneerrnieseneenrnrnnniiaroannens 126
FindWord.........evseeeeemcnmmimrerrirrreseseessssssassnens 182
flashing menu HemMSoovemmmmrinissrenisincnnenns 222
floating-point arithmetic......coooiverrnnvrrenccrneniienns 236
floating-point eXCEPtiON.....ovvivrsnrreesssrssssssnsrnenns 235
Floppy Drive, High Density.......cecooeonieernencennne. 230
FMOVE .. oiiiiiiieererrire e srenrnsmnessisasssssrensseans 235
173 273 RO PP 226
FOND....covrerimrinssssirnnsissssennsnnnses 191, 198, 242, 245
110} 1| IR OO PP 30, 92, 191
association table........cccciviiiinnininnninn. 198
downloadable........oeeeeerrreniimrinsin s 217
family desCrPHON....cvvevvinrrnrmrsissssnssnnisinns 198
fAMIly DAME...coovveeieiiinrrieen e snns 198
family DUMDBET........coovvvriiimnicesencnn e 198
fractional Width.......ccceesveeeerrererriiniisirnrarrnssacens 26
height tablecovriiiiiiniiiin e 30
TESOUICESeeuuursseerrrrrmsssassasasnmnssrrrrsssssasanssssannens 198
SCALEH.....ceeieeerrrenneieerneeerarnarses e rrarsn e sanaanans 26
SITALEEY +oveenvvaveemrerversisisssnnsnnsensssrossaannesasssssnas 191
SITIKE TESOUTCE...eeeereeerereerirrinsinseeasessssnsns 198, 198
style attribULecoveveerenirre et 198
Styled....coveerriiiceniri e 198, 198
SYSIEM 1eevreieerimssiiirisrieneareanrsssesnassissansrrasssnn 191
FONT ...covieeitrieeennsssvnsnssrrnrassrnrnensnnes 198, 237, 245
font COlOr LADIE ...evvveeenee i e 198
font family deSCrptOncocoriirineriserrniiiinennnen 198
font family description IESOUICE........cirrrmriuaseras 198
font family IDccveviiiiininnrreceniiines 242, 245
font family Name..........coimviiennnienssnicssnnnnne 198
font family NUMDET..cocoiirvivniricinncnnissannnns 191, 198
font family DUMDBETS ... 245
FONE TCOMueenesseeieecererrermrrerreressesessesessssnssensesnsnns 2l 7
Font Manager..........ocoovnimirumninenenessiossnansnes 191, 198
fONE MAME ...v.eevvvrerieeamicesrrre s rranaasaaras 191, 198
Font Name Mapping Tablecoccvemiiiiinne 191
Font Registration Program.........ccuenmamese 245
font-association tableccovvivireiinnniiin e 198
FOnt/DA MOVEL..c..ccoveiiininernrinnrraassd 6, 23, 191, 198
FONUIFOTCE 1vvvvvenevreeeerernasesisserrereennnmnsrrasssssrsssnasees 242
70,0 | WO UU R SPPOT 246, 246
FOPECOI0T ... v viiireenneseermmnntesasnsaseansannassssnansarssses 73
foreground applCation.........cccvveninecnrcesinnnnnsiiinns 167

Developer Technical Support Ociober 1989

FormsPrintingccovevvviencrinnmeecsnrerrersrserannsres 91 ZOOKAUMEcevevieieenecrreiesres e e eserne s en e ernnnan 248
FPGetFileDirtParms........cc.ovucrrevnnveeeeeemmenarnnnnss 137 GrafPort ... irccrrerree e rren s es s eearanveene 252
FPIAR ...ttt s sr st s se s 236 ERAPhET ..o e 231
FPMOVE ...cccceecieinrcsceeris s sssesssens nn s srnn s 137 graphics deviCe......ccooriiiviccvercecnivrccnenenervieeenee 120
FPSetFileParms........co.veiveeerreriinnnecirrrncanennnnneens 137 GrayRgN.......ccccreeeeeinnrrreeereirneee cesseessssnnansssnnnns 194
|) o OO PP 236 Group Coded Recording........c.cvvuiineiiiniiinenncinnnnnn. 230
FractEnable.......cccccoovvvviriieiicinnnnnnnseannnsns 72,91,92 grow zone fUNCHON........cccvvveenvrvrreenrererenneeiraeniens 136
fractional line Width.......o...ovvmeiiiiinniinsinriiimenines S SN ¥4 & (1O 233
fractional width font..........ccccocvircemrreecrrrccrennens 26 hand-feed paper..........cccoveciveersineccrninreieceneerennenns 33
fTCOMMENLc.oeeeereierrreeerreneicccseeeeeennenersnees 29 handle......cccccciiiiiiniirerre e e 155
FREFccoitimmtiininiiinnnecninnssrsesrnnssnsssssenssnsssnes 217 BAKE ..oveecriees e reirssii e e s e ns s s s e bbb s 117
TREANUIN ... eeeeecrr e i rr e e s res e ran s eanaenens 246 DIl eroieriiniererernrerreernrarersrnssresernsnnesssnnsonnnen 7, 117
FRESTORE........ccciiieeiiiirnrcccriensrccnnses s 229,235 hard disK.......cvcemvmirrieisrieenrnnninninreisenriensrenns 134, 159
FSAVE......coiiiiiiiiiiinnnireemecencseessse s e 229,235 HardRockCoCoJOeccoccermmeriinniiinseinesessnnnsssernens 246
FScaleDisable........ccunmeieiiniiesininnneerenrseessisseneenes 92 PardWAS ..o e e 234
FSCIOSC. ..coiirreemceccierrceiiaraicnineeeesneeeaneeseenaneans 102 hasColorQD.......evviiimririmmrnrires s eemrereenees 129, 230
FSFCBLEN ...coiiiieriricrrrrrie e e e r s 66 hasFPU......corieeiciiiiinrccrirrncs s aeen e 129, 236
FSOPEN....ciiiiiiirrrrnccsrrccnseee s sss e nnen s seeens 102 HashStriNg....ccocoiviriiivcciiivirisnnerrrsneneesesssnmnnnnes 29
fSread ... e e e 246 HCURBil.eiiereeceiiireiicenrriecceercecreeceeeneeveevinnes 2
FWIHE .11t eetieerrreeccrreecrnrearnnaaresaesae e s ranannn s ens 246 HCRAR........vvivmmnisiinriicirsninsnssss s erassnesnnnnesnes 218
GCR format........coooerveriiiiciiccicecicisniesscesaeaans 230 HCreateResFile.....ooocciiiiiiiiiiinsiniininissinsisniinnn, 214
GDEVICE ...oiriiinrrcerresce s sesere s snn s s saranne 120 HD SC SetupP..cecneeceiiecveeeimeecreeeereeneevesee e 134
Get Info....vicoceinicrirniiciec, 28, 147,189,210 heap ZONE.......cccciiiiroiimniininencreesinisessnsnasssssnes 248
GetAPPFiles.......cociaiieeiiiiiicccviinreienres s ereens 77 heat disSIpAtON. .. vvvvvsurrivosririvnmeassioreverenersernecnns 260
GetAppleTalkInfo.....cceeeevireeeeeeereer s 250 heighttable.....cccooieeiiriiiiieeice e e 30
GetBridge Address......ccooerveveninisssrrrresrrrreesneereens 132 HESccconvveeeee. 2, 44, 66, 67, 68, 69, 77, 81, 87, 94,
GetDCHERTYccoveveeeerieeene e nreerr s s en s eerrsnee s 71 s 101, 102, 106, 107, 108, 130, 140, 157,
GetFNUIMcooeeiiicc e ccrrre e s e e rneeenne e 191 e 179, 190, 204, 218, 238, 246
GEtFOMNAME ...evvvveesinriiveriainircss s eesurmsserissis 191 HGESIAIE ...ovvvriiriiserrcstimnsssersesisbonsvrrcsssrsnmnsnres 2
GetFontNUmbercocceverreerirccnreenieeerreernaeen 191 HighSiema....ccoooiviirereireiircccr e raenenee 209
BelFTONICHCKS.coiiiinnncnsiinrnrec e cer s 205 high-density disks..........ccoovrmmerirrereeririnnecennennrns 230
Getlconcoveniirie e e 55 HLOCK. ..o cecccen s crve e enre e e e e ereaceninns 2
GetIndVolumeccoeeeinnciiiiiiiieinere e erenae 24 HNOPUIEE...couucirrireeeccrrcrenrrrniinnsesssssarmnsesesresnes 2
GEHTEXL. ..oevie e i st e ssre s re s sse s erannes 18 HOpenResFile...........ccovivmmiriinceirseninirr s 214
GetLocalZones. . .vvverreiineiiiiiinnsniiiaciessrrssnsenenans 250 HParamBIoCKRECc..coiiriinciieinicrecrecina e eenens 204
GEtMENUcovereeerreienrerrecrnreerrsneesren e armraerrassaons T8 HPUIZL...coor i ceeirrceec e rrecreere e rree s enc e arreer eenes 2
GetMYZONE.......ccccerrriireeiieinrreeeeere s s s crrereanneees 250 HSetRBil......cueieeeierecrenccreeerrreereree e e e 2
GetNewControl.........vccevecrirecrecicceannienraeseiaeaenss 203 HSetSLALEccooeeeiiiecinrinieeieseeneirerrrssnns s s srannnsnen 2
GetNewDialogcocoeeere e 4, 34 HUNIOCK. c.cerrreeierrrreererrreenerrrreereeeeresesrressrsseerannness 2
GetNewWInRAOWcociviiiiiiirr i e HwCEEFIagS....ccviiiieiiiiciiscnninvnmascssns s asmanas 212
GeINEXEVEN.......ccucrrirrrinerrsencisenanreas 3,5, 85, 194 HyperCard........ccccoecererinininsneenncsimeenn. 168, 169, 170
GCtOSEVENL.......c..oeererrreennirecrrrariensresssrsnrrersnaes s 85 ST TESOUICE ... veveivvrnanssivervisrsasnssnrenrmnnsnrressns 168
GetPalettecoveve i s 211 background field imitccovrccieeriecrecrenrenne 169
GetRESBASE ... e i e e cem e e 6 background printing........ccooeeereiiicirnienennaneenns 169
GEtRESOUICEcovveievieeeic e ceceernrec e 4,154 closeFieldcoovveeriieicrecee e 169
GEtROoevviiiniceiiceiicr e e s e e e s e enas ereaas 128 Al e eeans 169
GEIRSIDAAcovvvrereerreensrvennrrirsserinerrsnneans 128, 173 EXH L0 iieeirrveenirrisreeriininsesnnrrrrsssssereersansersarnes 169
GetSEYISCIAP . ..ev e cerceerce e ere e e e e e e ee s 207 file fOrMAL.....ccoorrrreeeeirrrnrreeerreeenreereeercenenenens 170
GetTrapAGAIESSovvvveccreeriseniiire s eressrcr s s s anees 2 15411 KOO OO P U SOOT RO PRPPUPPTUPTPTPO 169
GEtVIMO ... e 157 idle hangler.......cccccammmnrnnviricccneccnennnrerroen. 169
GetVol.....cooeieceee e 71, 140 MultiFinder.........ocooeeeveriiieeeicereeeecc e e 169
GEetWDINMOcovveerrver e srsr e rrsssbenes 218 PLIVAIE ACCESS.1itmrrrrrssrieeerermsrrrrrrrrrsransrrrerrersesns 169
GetWMEIPOTL.......coov i e e e ecrneneeeeeeeas 194 selecting fields.......cceeueeeevirrireriieee e, 169
GetZONELASE .. e vvvveerrrrsrrrerrnersrereresseenrnrersessssssnes 250 title bar highlighting.........ccoccvrermirmrrorrsnnsenne 169
EHaveAUXoooiiiiriiiiiiiere e rne s 238 visual effect......cccinviivincneniecrer e 169
global variable space..........cooooiiiiiiiiiniiiiens 223 WOId WIAD ..o s e s 169
global variables.........cccoveeiveniinninninenennnnnes 208,256 T .. 246
Blobals....c.oovie i s 104,227,256 TAC......cicciimiiiisiininrnsnn s ssserrasssnsssanesssannns 180
globals in stand-alone code...........ooeceveeireirnnaenennns 256 ICN# ... e s e 252
BlUC ... iieeevrierevinevruarssrrarnr s er et e resbeas seets 219, 220 I0OM.uteeruvserrrssrersrssnesrtnrrermressrnessressseserrsrsersararns 55

Macintosh Technical Notes

(6L 0) . FETUTT SO PUTPPP 253
ICONS 1N MEMUS c.uviieeieveirrerrrresensernserarrrressrenssss 253
IDEE33 ooiiieeeericevereesrarmnnnsneraesrreissessnansnansanarnrees 151
TEEE SPecification......cocovereriasivasnvirnesnssnisssininnns 234
IMALE OPETALOT ... eeoeemmimiisiasnisnnenrranntinssssesnsnensas 73
17512410 ¢ 17 SO 3, 33, 72, 73, 95, 128

APPIETalK....oviniiiiiiiiiinsiae e 124, 125
IMMED ...ccucieeeriuessesenscrreernssecensssssisssnsrsrnsanss 2, 44
in-line glue FOULIMES......cc.ciiiminiiiivmrinrnnrnrrssanssne 208
15701 110 1< g 18, o PP 192
INIT o.cietcieerrenreersersennsereerasaeenbasssesasnsnssane 110, 247
IMIEDIEV.rreriirireeeeraennnnssresesermnmnssssssrsnnnnntroseesasrees 251
TNELFORES cvvvviviirnnerrrenreeerressssssssmsssnesnssressnsranenens 72
INIEIAPRICS ..o et s 91
HHIEMIEIIUS .. v venneenrreerernaerrannssssssnnssnssannssanrrorssn 211
1110 £SO UP R PPPIN 197
INIEPAIELIES. couvuirreeerrerirssinaneenssererarensrerascnanranes 211
I WINAOWS. oveieereennarrnrsisiinserensosrrnasassesssssananes 53
inline assembly LANGUAGE........cvvvrermmecmriiiiiinnnniiens 126
INSHALET .cevvveeirrrareereenmmasereessersoneessssssnssssansannsrnes 75
installing MEeMOTY ...ccocvuiiernirrmieinrnaarnirseesssinnnes 176
INSIUCHON CACKE ..oeevivveeerrverirree i eraase s bensans 261
interapplication COMMUNICALONocoeernnriisrnreres 180
AHETTACE 1 vereeeenrverseereesssisessessssnsssesarnessnnersaesnsl® 1
IREmational........coveereeenicnnirmsniraninsanens 241, 242, 243
ITEEITIE . s evrrenreeersnnneasssrsrasarnnsssmessssssssrrsasssnnesuasnrs 9
iNtEerprocess COMMUIMICALIONc..vvreescnrinsurniirreses 180
1111211 4171, S IUURIP PP SPUPPPIP 85, 206
interrupt handler.........coovveoiiinininnnennniinni 25
FEIT 00 (1] 6,0 =11 oy SOOI OURPPTPPS TP 221
NEITUPL PHIOTIEES «ovvveeieriennrreerrssrnnessesiinnnnnnsaans 257
interrupt Service rOUtiNe......ovuveeiiiinermnannnrenainnenneee 180
ANEEITUPLSuvveeiseeevsssannerssssnnnrassasseeressnsinnansrenns 221
intersegment function call.......coooniiniinriinnnnn. 220
I OICE. ccvvvvrrrrrrrrrececsresomeennmssssssssssnnsnnnmnannssasss 242
intrasegment function call...........cooviiniiininiinnnnd 220
JOCOMPIEHON.coveiererirrriineer s satbesnenanns 130
ODHEIDeeveeeireenrirsssssrenrssassssrsneensrsansassssassere 77
TOFCBINAX. ..o iieeieerseecmaerenstsnassseniaarsssnnreaenesnans 87
FT5) 21 03710 0171 L=, SRRSO PP TP PPN PP PPP 69
FOFHETYDE rceerrererrrenssrenmnsensssenarnessssansasnnnnases 102
TOFIFDAIINFO. .oveiiiivrereeerivvrrsssiansiiirssssseses s 40
TOFIINUITE 11vsieeeeeeeinneerrsrnrisasssennsssnostossnsennanenssire 77
FOFIVErSINUIN ccou v eeveeerenecmesssssnnansssressenssnnnosersnnns 102
TOFVETSINUIN «.oouveeeenirnrresecessermmmrrmnrsasassnnssssnsnns 204
TONAINEPIT «eeuvevevrcinaeernnensnrisnssrrssasnsasesnssssse 69,179
FONEWDIIIDY ...coveeevveecnnrraernencnnesssssssesssnnsransrisss 226
FONEWNAMEoouneenerrrrrainerssssnseeraisessossnanssenannes 226
TOPOSOFESEL ..coevveenerrerranestirieniirrrssannsniseseennnsses 187
JOVCIPSIZE. ..o vorureeeareiinrrserner s s 204
IOVDRENGI ...euvveeereennrereeenrissressssasnnnsenennesssnes 106
JOVDIVINLO «.oeeveeecnrviecreriris s sasene s ae s een e 106
TOVINALINLO .. vveevncersreenieersrertassremrrrmassrasesnnanssans 67
TOVEIBIKiiieievvriiicearrensasnerrstsassasssssmensraassnses 229
FOVIIBIKS. ..oovveemeceeraarresnereeassesssnnmsssermsansrssanss 157
FIOVINIMAIBIKS ..vvveeciceraneeeiaisinniimeseasnecaniian 157, 229
HOVSIEWORd.coineeiiirenmnre et 66
TOWDDHIIDovvievreemneerssinasssinrasnsesnsarsssasenans 140
FOWDPLOCIDeve v eccererersssssrrssesnsannarnsnonans 77,190
LB ievvieeeeersrreseessrasssassnnssernetoiisasssanserannnnnnss 180

is32BitCompatiblecoooiimirnimiineniia 205
ISDHAlOEEVERL......ovvevrrrrreeinirmmrieneenrerrnntienaanae 5
ISO 9660....cceeieccrrrieciiaeerrrrissssissessssensrssasases 209
T 11] (os) | RS OT U SO PTTPRIOR 253
FL0[€.=71 {111 T PPN 153, 242
TUSHDALA ...vveveee e eeeessrrsnirersrvessssssenssessassaneens 178
TW M. s eeeeirecniaerrisseeeeseese s sarnr s e neasass snasbassnenss 2
Jane S HEADccovreeniiriiisiiinrinnnicne s st ss s 248
Japanese Macintosh Plusccoreincniiiriinninns 138
JONEFIMET...ceriir ittt 85
JIMMICS. ooeiiireiien i et e 55
JUMP tAbIE ..ovvee et 220, 239, 256
Kanji c.oveeineecneiiisiinicninnir s ssss e i es e 138
KanjiTalKocoiiininmnrininnsrrnnnenccemnaneennnisnnnens 138
KEY MAPPINE - ..oeevrvreirriniirnnnanrinissncessnnenemrnaee 160
keyboard.......ccervnrmerinriniiie e 160
keyboard driver.......cevemeecmmmnncnnn e 143
KEYTEANS......oceoriniimminrnnnrnenssesssiatsessssasnscsnsas 160
KilIAIIGELRE ..cvvuvverrresnssamanreareerrnsneenmenmesssnnasen 250
KilIGZPIOCcoeereeremsessicsssosiimmnrnnisissssssnrnnnsses 233
KilNBP..... o1 ceeereersacenmrerrssssiesssnasmanssnnrssresssssenss 199
18 DOMDA ...oieerrrrrermnemrrsssasrrrrarrsss s sraressaaeensanies 256
LAGIAEQcoeivrrserraenem s srssssssnsannsansncennens 250
| 7. PRV PP R 9
Lap MANAZET ...occcoieiiiiirensrirrece s s s s srasnssaanas 250
large capacity media........ccoveeae i, 210
large-screen displays.....oovvviiicescnnneninennn 100
Laser Prep......ccocciinmmmmenn 152
LaserShareoeevvevnnreererserecseenuerssiersssessnarnnnnan 133
LaserWriter 72, 91, 123, 128, 133, 152, 175,

... 183, 192, 198
LaserWniter driver.....ocovvvvrcreemneriiesssrernreesnnacrninee 217
P11 | D UL RO PP 126
LaunchFlags. .. .ccoovviiivimrrsriissircccccnnennnnssiienssanns 126
LAYEE «.eeeereeereerrcsinriesernnaeesaree s e e e n e 180
LeadingEdge flag..........ocovvmmniirnnrnssncsninninees 241
LeftSide flag.....ccoeeveirimninnnimrinnsicnincciesiae, 241
LGEtAEQ ..o ieciiierrresistssaenrissensannann ssenrecssnenes 250
LNE BIEAKS ... e ceevererevvmraerrrnrississessnrnnsrernssssosassenes 92
HNE JAYOUL ccovvrrviriniriniiiierres s sece e e rrenas s 91,92
line width, fractional..........c.oeemmiirreremnennnriinnen 9
lineHeighl. econeeiniiiiiec i 237
LineLayoutOff.........cocoviimniiunmnnnnninnecsnieene 91
LineLayoutOnoooievimeiiirannaeretessscnusensinnens 91
LINK ...coeriieiimrreenreinessrreeseannassessassnsssesssssnnsssseans 88
link-access Protocoleeciivireniecrmmrmnrcinnnrns 9
LISP .. oiittmeieeiiiiiisssisssssersssnsesmnensssssnnmanmusernrnnss 231
LiSt MANAZET.....eueeeerieiiienrrirnrnmnnnassrossssenesnesiens 203
TiStDEIPTOC. .o vvvemrerereeesnrsassssnnnensassrarsssessaananens 203
LOBBYLES ...cuvverreennmmeiinernrsssranssesssssnenessissansnsnnes 213
lock & €Ject 1abS..occivvenirniiinericei s 234
10OKUP TEQUESEvvvriininnirssrnnnrnnrreassscssaannneisnaes 225
low-level PrintNg......covvermimmrrrrnnecsnnrisines 124
JOW-TNEIMOLY..cceviirseerrissessnnsnirsssersassesttsnnsrsrssnans 2
low-memory globals..........coviemeevimniiennieinin 117, 212
LRMVAEQ ...coeiieeivieirerrseisceminininssissnnrnsssneensane 250
MACADD +oveevevreeemenresisiisnnrsnessassrasnessasaassran 220, 239
machine-specific Signal......cmecnieinni 230
MACKINETYPE . evvvvrriseirneentirrinrannneeencrrcratternas e ee 129
1, e SOV PO 258

Developer Technical Support October 1989

Macintosh binaryc.coovviieriineeiinies s 229 Fo_ASIRIL...ccrrriiiieeir e rcesssemnnr s senes e 256
Macintosh ITX.......coommeeiiiii e 230 Fo_MethTables.....ccccoveveveveerneennenrnriscvannenns 93, 105
Macintosh OS5ccorrriiiiee e rresrrrrriann s 229 Bo_SeIPrOCS. ..ccunverauensiiaaeerriaeeereenesassasssrscrasses 93
Macintosh Portable...........cccoommieiiiniiinnneens 254, 255 SSZ OPLON . ..coveisieeenccrriss s ae e sree e e 256
Macintosh SE/30......cucceiiiceiirreeecerrecncerrneanes 230 B0 e e 208
MaCPAINL......ccoiiiririeii e erers s 3,86,171 68881 ..unriiiiiiiirerr s rrearac e e 229, 235
MACSBUE ..vevevriirrnnnrsnmresiriiiiines e srenas 7,113 assembly language........cococciieiiiiiiciciiiincnicinnnen 200
major SWtChingcvueisniiiininimreecinnciniennneeanenn. 180 BUES ceeeveriieiiiininir i s s sraass 200
MakeASWorldccoovvueicireericeemreerssss s rrnennanaess 256 C ot ee et s ee s ren e 164, 166, 200, 232
master POIRLEr......cccoccvervrecccenenennns .1, 53, 228 globals from assemblycooeiiiirinniiiinnnn. 104
master pointer blockcoovvviciiiiniiiininnnnn LHNKET...ccvmeerieeirccen e 93, 110
MAath COPIOCESSOL. uuevieierecrnrrrrreesersnrssinsasssas 235, 236 Object Pascal........ccoovveciiiincncnnrrinrecssernnresenns 105
MaxAppIZoneoccuuviiveicinicrnenniniesresnsnnnnnies 103 OS Interface Library.......ccooccomecmnsiisinniiesns 200
MAXDEVICEccvvueeiiiecenacennrarrrrannrer s mssrsisssisaines 120 Pascalcccceererimmaeiireecenn e sernnas 146, 200
MBarHeightooevvriniinrerirnc e creeeees 117 SANEo iciiiciriris s s e rrrersens ressessrasane 235
MBDF ...ccoi it s e 227 Toolbox Library.........cccoeiinrinininnennicannenn, 200
MCBB030.......oeeerninnnreomeerencenmeernnvisssssssssisnnan 261 TOOIS 1o uuueeiireeerreenerrrrsensaeriosreesiasasssnssnsarannas 239
MCG68881/MCEBBB2cvviieerrernrnnnriereinns 235, 236 version 2.0.2.....o.ueeieumeerrennennresreis e e 200
MChOOSEMSE ..o e eeaaes 222 version 3.0, tineaean 200, 219
MDEFccriiiernanrermrmsesanensnmeenninestsissrassansses 222 DataIniL ...ccovereee e e ssirssrise e e ae e 93
B, 4 0.3 PP 103 [SLOADY] ...oeceeeeierevvicieeseereereeerannrrrerncssssssanes 93
MDS Edil...coeeeirrniieriieiniiiniiiiinscc e raemnsessenanens 84 MS-DOS....ooirrccin e e 230
MEMEIT......oieee i eeer e s ssssaa s A 11 P 205
MEMEITOLciiiiinierrireeieeseneaerraensesaesnnssssssssrias R (Y1 S OO U O SO T RO PRTORPRRN 205
memory Configuration..........ccovveenennnearsireaiinaee 176 MultiFinder............c....... 2, 126, 158, 177, 180, 185,
11T 0110 1114111 U 176 e e 190, 194, 202, 205, 233
Memory Management Unit.........cccorviiiieiiiiiniinnn, 261 A et e s aess e s e nnn s 180
Memory Manager.............cvvvvmneens. 205, 219, 228, 252 APPIE MENU ... e ccmntvissia s 180
MEMOLY SIZE TESISIOT. ivvvvneiinnciinriseerrennanannes 176 background appliCation...........coovennnenininansannns 180
MENU.....oieviceiiimirssssseinnsnnsisnssense reerrrsssassrasees 222 ETOW ZONE PIOC ..cceneeeeern s sisss ssisssnsasssnnrnnsans 233
menu bar definition procedureveevveeeeiiniiiiiniinaee. 227 JAC it irccrrne e e seen s s rsss snan s ssann 180
menu flashing.........ccovnnmnninnnne s 222 0 0 TR 180
Menu Manager........cccecvvneeesersirnessiisinissnnnas 222,253 Taunching....cccoovvirvmiinei i nranrrens 126, 180
MENU TECOTA....ccoreeririrrnerrrreeerrsessssnnreensssssrensresaes 222 Open dOCUMENL.uvuiieiusrerrrerrrrrrrreseeassnanans 205
MENUIEM L.ooeeeiinieecircea e crsee e ssnaaa 253 Quit application............ccovrireererrriemnreiciiniiinian. 205
MeENULIST.....cveenireieccemrrrarerrrrsse s rrosar s re s seenas 85 SCTAD v vvvereeseenmanaerrsssssssrsnisssennunsserrntnsensassseses 180
MFM fOMMAL.oveeieriirieesreenreerrnenrssssssssaseeees 230 SIEED ..ot 177
MES . et 44, 66, 68, 102, 204 SPlash SCIEEMocvureiriiiiiiiinnienriris e rerae s enee 180
MFTempHandle........cccocooviiiiiiiinniinninrar e nrees 205 SUDLAUNCHINGvvvvreecnnnnacirrre s rrrrirs s resr e 126
minor SWILCHhINZ.......coveviiininirr s, 180 SWILCHINE. ..eoirreien et e 180
MMU L...iveveerrernrrenereemmroeerstecesessinsninesens 2, 228, 261 System 6.0civiiniiinini 205
modal dialog......ccceerrveceirrrciirinneens 34, 247 UnmOounmtVol........coiriiirvireieie e rreerrenarsssssnas 180
ModalDialogcovvremremnemmciniisiiinniisierisanen, 34,203 WatNEXIEVERLvueeeencennecsisssisassransaneens 177
modeless dialog......ccceevrneeeinnneccncrnn i, 34 WOIKIRE QAreCIONY ..covieerriccen i vvrceereenrenvarans 190
Modified Frequency Modulationcccevevnneenn 230 multiFinderAware......ccveeveeeciiiiiiiiininneennnans 205
MOMIEOr CAbIEcouvveninriiiceneiris i s nsneaes 144 multiple bus MASLETS.......ccovurvvrrrrrrrreecrresianiiennnas 261
monochrome display.........cccoveniiisiiiiiiiininaenn. 230 Name Binding Protocolccccovvvvniennnnne. 9, 199, 225
moral of this SOrY.....cccoveeceireeerrrcenrsnriinsin, 234 name binding Protocol.......c..cvrreccrrneccrerseenennns 230
MOTEMASIETS ...eeeenearnnneerenenaerrannsnssesbasssiinnsssas 53 namow GrafPortccooveeeecennic e e 60
INOUSE . .cvumrieenneraaenmsasnanssnsssesssnsiisssssssnsnansernssssnns 10 NBP....oiiiiiniiiriri e nnrea e 9, 199, 225, 250
mouse-mMOVed EVENL.......coiviiimmiiiie i iannaas 205 NBPCONMM. .0vvviiieiiiiiiiiiecnii st crrers v anaas 9
MOUSEDOWN 1 eeviiiiiiiiirirneriici et seeaes 205 nbpDuplicate........correriiiiiiiiiniiinie e r s 225
MOUSERENcoivvinrrriirmriemimrin e e 205 NBPLOOKUP...ccommeerrecririiiimiiiiinise s neeecennnnens 9,20
MOUSEUP e eeerecmrecemiiriessisiisiiitecnissssssrnsaassess 205 NBPREZISIETcvvvmrrevmneoceemreecmecririnisis e annssne 20
MOVEHHI ...eovveerrvereememrcceercnrtieniieisin e 103, 111 negZcbFrecEIT.......ocvvviieiiciiceieie v e 151
MPNT file...cnneiirciiriiei s aern B6 network eVent........ccoereerncsiirimmiiiinnreeneee e 142
MPOPUPMSE ..ccevivviiinieentnnseriisssenrassssnsnrnsresnnes 172 NewHandle.....ccccccooorriiiiiiniiiinnisssssenn 7, 117
MPPODEI......oeeirtiirisrie e e e snes s ssssarrraseaes 224 NewHandleClear............ccccciiiiniiineeermninennn, 219
MPPPBPIL....coieecice e ceecneces sesaaa srrsiiaes 199 NewHandleSys.....ccccoormmrieeeceniniiiiiiiiniireerrnnnrenns 219
MPW............. 103, 110, 121, 193, 200, 223, 240, 256 NewHandleSysClear..........cooiiiimnninniinnnnnn: 219

Index 7of 13

Macintosh Technical Notes

NEeWPLICIEATcc v vrrreccreirimmnnrseteeisaassseeerreenss 219
NeWPLISYS .o ittt 219
NewPtrSysClear.........ocvevriciisiiinisineceniinnnsnns 219
NENT ..ooetciceeereeveaenemereesssrertrrrssssseseasnnnes 198, 245
NGetTrapAddress......c.ococeemrimmmrrincinrecninrensnnnnns 156
NIl handle....oivvereririiicmmrcese e sssiaes 117
NIl POINLET.....coiriirarrreiiiiiiiiree s ssens 117
NMEFIALSviviviicriiirire e assares s enenas 184
NIIMBAIK covveieeeiieenir e vssrencrrenesseesnrsrssssssssssssennes 184
11111 i 17 |- SO PN 184
NMREC .uvvvevivereremsseennearmssssussnrsirsrrrrarrssssssssrnans 184
NMREMCON. .. cevrervirrirrrre i st 184
nmReserved......coeeciiniiiiscn e 184
NMRESP...cciiiiiirissssrierriiseseessenressrsne s anesenreees 184
NMSICON.....iiivreirrrerrreeirreecr i csssennsrsssareesenasnnanes 184
OMSOUN..c.ounvvrereeri s ireai e e asaea s enaees 184
1111] | S PP PUUT 184
11111 3 TS PR P PPTOPPTN 184
NMTYPEoecrireirarrrriiani e srseae 184
NO COMPONENt ATCA....iociieirarisienersanansnmrsnnssassasases 234
NOWOINAIL ..cceiieerrannnneennnesessosssstiosssssssssannnesanrnisss 21
NOCTY veevvenrriessssssssssassnaneesiesrssnmnnsesssosassssnsnsanses 21
NODIARBILS ..eeevvveeneevrisseeenccnesirarnrrrerernvrenssnaes 128
NON-EXACHLY-OMCE ...ecevneervsevsicsiinniiirinnsiesesnnansssansas 9
non-Macintosh SyStems..........covusiieiiniirirranonaannns 240
NHON-ROMAN ..ottt ireenrae e rstne s ane 242
Notification Managerocovvivruivrsrvmrsseenes 184, 247
NICE 40960 e ieerrcevnciisisieesisstreeamneersnsrs s 197
NSEPAIEHEueerreeecreereeranreesbssisssaansrrnrreisans 211
112307 =1 s OO OO PRI TOTEN 24
NUBUS cvveirrnereeseeeenieennennn 221, 230, 234, 260, 261

extender boand..........cviirieineermreimniiis e 148
NuBus expansion Cards...........ovuviversressrnesmesssnnnns 260
NuBus power Lmits.......coocerrimmnninnnrniiiccnn, 260
111111 L U P PUURPPIN 107
ROLSCIADcive e reemmas s sist e e een e reraasas 207
NUMETICVErSION.....coverrecceeeirissssirneiiis s rreees 189
NUMVESION....covvvviieiiinieesisinssinna s assaressreres 189
Object Class....cvviiommicierssencsrrissrssescressiasssnnnees 239
Object Pascal....ovceccciieriinnninrnirsns s 239
object-oriented programmingcccccvveeiisninennes 220
(111 =0 - SO POVO PO PPPPPR PP 239
Off-Hine VOIUME.....ccvvvmmncerriiisiirriier e rrrsssseennannans 106
off-screen bitMmap......vicveceeminrecsnessnirnnsennss 41, 163
off-screen pixel map......cccccvverirnns eeeeseresvesonsans 120
old-style COIOTS ...cuvveiiiiiiiiinerenimre i ae 259
onlyBackgroundocoiiriiimiiiiine e 205
OOP....cceeciiierrrrsenmiesssis e s sssesnnnees 220, 239
L8711 D EUL RO PIP PP R 102
OpPEN rANSItioN...cccocrvvirseesrirrnrissniieescsssnnrnssrssses 250
OPENDIIVET ...ccunvneneireiniisrissssnsssne s srssanennrnes 249
OPENPICIINGvvviireerrieenrarranerster s et 21
OPENPOIL......cocceemrivriierisisiinrrinceaneaerrresssan 155, 194
OpenResFileovorveiieenines 46, 46, 78, 101, 185, 214
OPENRFcvviiuniiinitnnirreesssnnererrsesanessnsn s savenes 74
OpenRFPEMocoveiiiinrnnnrnrreninnnserenissseasas 116, 185
OPENSOCKEL...vvvreeeirectvriss s ssranr e e 20
OpEnWDcoriiiirinirinirtbesaresstren s sene e nserbais 218
OpUMIZiNg COMPIIEIS......vvvvmiivirirnniinensnreninnes 208
OPWIEIT ..oveeeriivtiiee i rnmr e ssasae s 185

OSDISPAICh......oovvieciirerrerre e raeerrrbreara e 158
0] 0171 | DU PR 208
OSULIS. D ereerrernevnrreeeas s s rssssnnae 208
OUL-OF-SBQUETICEccrveerrennerrvisssiiiniiiiarsrsnnasassasaenes 9
OVETArawing POWET......cerrrreevevrsiniisisiannesssnnasnnes 260
OWNEA TESOUICE...c.ccviverririeeisnnennrrencesssssssissinsrsans 6
PACK 4096....ccoriirreniiineriiiinnensrrvsssanssannn 197
Paged Memory Management Unit........c..cviveninne 230
Palette Managercceeeviviuiinirrnirimrerntoesasnnens 211
PAP ...t eerrr e riessisesesss et n s an s s s 133
PAPEE MOOM...cuvreriesieiinerrrenisssresrsnnennesnasnissesas 33
ParamBIOCKREC......coviccecrreerrerereeessssisnssnssennenennn 204
parent irECIONY ..vvcceceueecriereineenssrnasinnssensasserenanes 226
parity RAMoooviiiiniiiiniiein e 176
PasCal oovviieeiiieie e et rats s s ens 146, 200
PASLEDIEV..covveirriiee it nsseae 215
PAIChiDg TAPS . ..eevreviieeisrrnsseecrnniniannainnrasaasarrenses 227
PABNAMEcoeveeriiiisisn e vt e reaaeeenane 238
PAtEIN Luvvvseivecee it erercerseennessssanmsasssnsssnans 86
PBGetCatINfo.covvmmeriiiinirinircnrrseninsni 68, 69
PBGetFCBINO ...cvvveeiinirieriricesresannassncinsssnsessanns 87
PBGetFileInfocccenniiiviriicin i sereasnsssnnnanaens 68
PRGEtFINfO.....ccooeivreeererrr e risniane e 24
PBGEtVINOcovcciienrieervemneeiineinnennas 24, 44,157
PBGetWDIDNMOcvvvineiceieeiiiereeiernnenn, 77, 190, 229
PBHGeiVInfo.......ccoveeiiinennns 24, 66, 67, 17, 106, 157
PBHOPENovvereeerenrccmriciieiinsinianinssesssssenneraas 204
PBHSELVOL.....ccoceieieiiinicnisrrnre e brirsissisesrae s 140
PBLOCKRANEE........occiiimmmmnnririieeimminncnnniecccinnns 186
PBMOouUntVol......cccoviimmmerrmviiniinii e 134
PBOPEIRFcoucecnrereensrasereserensseresssssecssacsensanns 74
PBOPENWDcooiiininiiinennnessitiss s 77, 190
PBREAD......ccoeeeeeiieciiiinneriremmesssss s rensasannnassenes 187
PBSetVINfo.....cccoverrerrrriinceiniiircrisnnasnssnrrseceses 204
PBUNIOCKRANZE......ceeeeeciireicisiiisnsnnnnsennannnnnnsos 186
PBWIILE 1oeeeeeeeeerereecaeernenmernrrsssssssecennranssansraraanss 187
< OO PUUUt 228
PC WEENIL. . iiiirereeeeeerrrrrrrreseesssssssssensnnssnesans 256
PCL oo eecerrvciiiesearrsssersannonrrssssassneesnenaenenes 231
PDS .oiiiieeecrecetrresseseeansnnana e e e er e be e 230, 254
PicCommMent.......c.covmsiiissiinneeseannas 72,91, 175, 181
PICFIAME ...oovniveiireenerensiiienenisrasssnssnerasassasssanes 59
PICPOLYCIO ..ot vinsssisee 91
PICT file......covverciirenenvvsranniniiscenenseneannnes 154, 171
PACIUTE. ...oeicrmririiiiinrrnnraane e snrerinenanne 21, 59, 181
PICIITE COMMENTcvvvvereeenrernanannneaessreeens 72,91, 175

application-defined...........ooorrreiminnsininnin 181
PICVETSIONovvriiinnciiminnrnee e e nnenans 21
PIN-feEd PAPET ...eoceerenecrrcirie e 33
PINOUL...coiireimmenrnrreminrsiiissnsssnnnsaanssasns 10, 65, 144
PiXxDala. .. .cccecereeennecereerieerssssiissasseennersnnnenranires 17
PIXel IMAZE ...ovviiciiiineicitirtr e e 120
PIXEL MAP 1eeeecmmmeniiiiiniissrrnrnreene s issaa s 120
Pixel2Char....covveevrrrreeecriinisinsnniessa e 207, 241
PIXEIMAP ..covevviciiiiriitree e 193
PixMEP....cccocriiiiiiisniniinnnnin e vsssanenanas s 120, 163
pixmapTooDeepELT........ccciimmiemr i 193
PLAUNCASIIUCT ...c.eeviirernneecs e 126
PlOLICOM .1 vt eeieecrreene e ere e s s i s amn s e s e aneanaes 55
PIOISICNoovevivivtincrisessrerassrasssessseansssannsnsanns 252

8of 13

Developer Technical Support October 1989
PIE. oo 211 PrJobIMEL....ccoeeeeecricen e 95
PmMBackColorccrveirreener s ernans 211 procodure POINIET.c.cueveereuiississiimmrmrsinierreenrennn 42
PMBOOLSIZEovvvieiiiiiiriciir e e 258 processor direct SIof....oovieiiiiiiiinin e 230, 254
PmForeColor....ccuuuccric i e sensaans 211 processor ROM........cooiiiniininnnncris 255
PMMU ...coiiiiiiciiiriciinnes e ee e r e re e nee s ssinnanen 230 PrOCPH....uveeviiieicirrnreeerieeeseesncmeesnssssssssnnannsanans 184
PMBSP......oiirrermeeiriincnsnnssnsesenenns 69, 77, 101, 214 ProDOSceeivmviiiiniieirnsiensrsiinaerrasnnassesseeseseenanne 230
PNTG file.....cccciivccerrerrrrrmnssiiinienenesissssssnnnes 86 PrOZram COUNLET...........c.orrrerrreninrmranessieriansrnnsiine 228
POIMLET ..coviieveeececiicreereenisisstisssnrr s isevesrseseneaaeans 155 propeller-heads......ooocooiiininniiiniiiiinniineninrrssreeaene 256
MilLuussseeiiieer e rrrreeercrnrerasrnrias ees e ssansrnnrans 117 PrOpenDOC .oueveeeeeeereeeisiorsimiemmscmemsesiseerinmsassssnens 118
PolyBegin....ovviiirine e rseeee e 91 PrOpenPage........ccoccoveiimeinnirrimsinniin e sesensaeenns 72
POLYENQooecicemmeeniniiissiiinistninissrressrnnnaaeress 91 proprietary 68000 SYSIEMS .ccoeviveniinirrnrssssssnennens 240
POLYIRENOTE ..c.ceeeinnresirensnnnanssiresbrrrsssannsnisrnanessnaens 91 protocol handlercooiniinniin i 201
PolySmooth.veecieeeerii et vnnne 91 PrStIDIalog.....ccoceeniiiiiinieciiiieine e e 72,95
Poor Man's Search Path 69, 77,101, 214 PrSUINIt.....cccivveiiireimiiniiiins e sessranrn e s 95
POPUP MENW .. uvunerereeeresssssrsrersrrissserirssssnsnsesnsass 172 Prvalidate......ccccevemeenriininniiiiimnnnen 72,122, 128, 149
PopUpMenuSelect......oonvimiiinninnieninannnnennnas 156 PSetSelfSend.......ccovvvereeerrirniiiiiiiiiiiniiinnenncann, 250
.. 249 pseudo-DMA.......ooiiniiiiiin e 96
POItAUSE...c..ccevevrrnrirrressnnranrrnss e s srrnssrsnssassans 249 PurgeMem ... c.cooviiiieeninnnnrrresree s scirarnrarransserees 51
POTBUSEcooeeereerrierere e e ressissssr s nien s 224,249 QFIAZS....cccoreriieiiniiiiiisnae s sn s na s e 250
| 03 411 2O OSSPSR 250 QLINK....eerriririiinninannerranrases s ans ressnae s 184
POTLINUSE. c..ootirinrriniiiir et 249 QTYPC.iririecc s e e 184
POINOICE ... e 249 QUELE ..eocoruireiinniie i st aas 2
POTTRECE v cemeeciieie i e ss bt s asesenssne s ssenrene s 59 QuickDraw......ccceen. 21, 26, 41, 55, 59, 60, 120, 154,
POSCOLL...eiiirinrier ittt e 196 e 163, 171, 181, 193, 198, 203, 259
PostScript.......... 72, 91, 123, 152, 175, 183, 192, 217 10 [+ VUV NS 73, 120, 129, 163
position-independentccoveeeisinn e 183 global variables........cococvievinriniriccncinnnnnenns 223
POStSCHPtBEZIN ... uvursrianrnnmnersuinarrareninareaemenneanna 91 internal picture definition..........ccvivervenereneeenen 21
PoStSCHPIENG.....cccoe ettt 91 LEXE MEASULING ..eeeveerrrrsiresiseisrernerrnnsrassssarrssssss 26
POStSCHPIFIlEoueee it san e i 91 RadiUS....ccecirrmuummeerrrcerereeiiisrssismmnssssseennneanannoss 100
PostScriptHandle......oocvvvrniviineniniiiin 91 RAM..iiciiiiinir et s se s ane s 176
pOtential NASLNESSovveersecerrenserersreeneriosrrssensnnd 250 RAMEDISKS .ccoviniiiiiiiininiriens s snsisesne 255
POWET DUZEL. ...envvinenieiiinmbiire s sienane s 254,260 RAM expansion SloL.......ivmmnnnirenninnnninn 176
20 7. P PO 230 RAMSDODEN........ooiiiirrenieniser i erssssessnes 249
PrCOSEDOC. ... eeerereeerercrserss seirnnannr s aa e e 118 RAS-aCCESS HME....oueenrrrmnesviiiiiiinnrarsrneanaennnnanaas 176
PrClOSEPARE.ciiuicimmrenniiiiiiin i siran s sssesnssaanas 72 raw Key €0de....oiiiiiiiinirarnens et 229
PrCUCAL.oevieeeeecviivrrirsennissrrsseesermsecassnisenes 192 FE-BILIY.coiriieeiiiccciassnnerisscnnneseeeesensssrnsareserssssases 248
PrDIgMain....cocveceinneee i i 05 REAU ..ooviiiiiiiinnieerieirreerranaessstaras s sersrssan e e aa s 187
PREC 103...cciieiiierrneessecininsisennrnan st sessanssvans 192 ReadPackel.....cvvvmiiiiiniiiiimmnainrrresssssnanne 201
PREC 201 .. eceieeeeiireeerrsnresnesenisnns s eresnnnrssiians 192 ReadReSl...cooiiiiiiciiniiiniiinc i arrann e rasg e 201
% 5 22 0. PO 72,118 1Al tIME....ccovreerenreaarsarar s asas e g e e 221
PrGeneral.......ccoeevvveermmniiiiinnnncensssansases 72,128, 173 RecoverHandle.........ovvvvveiiiiianciiinienenc s 23
PIIAIC ...ovvveeeeeeevcereecerreerrssrssisii e ansrannnaarroas oo 118 reduced QCOM.....uuuiiceeearrrriisiiisssssnnmssssnneenrnnniesas 253
primary volume descriptor.........covcnccnncsnnnienans 200 TefNUNML....ccccoviis i innimnnreneis st e s s e 184
Print aCHON TOUMEooeunrairrnnrrrresasncrnntessanees 174 TEfMIUM ...cceervieneeee e ssann b bbr st e e s n s s sanas 250
PNt AIAlOg ...oovveeireriitie e 05 TCRIOM...ceciimiiiinisrmrinsibrrrese st s st 193
Print MONIOT ... vucveeneeiinriemrainisnrieremnessienssnnes 184 RegisterName........cccceivirvnreirnmenrrsnsssinecssininnnen 225
PrintDefaultcoooeeieemreriivniiieni e 122 remapping KeyS......cccemrrevcriinisninimnnrerennsssenie 229
printer resChanged.........oocimreiiinnniiniinneiinen, 111
17 V(=11 (R USRI 125 RESEdit...ooecocciiinicrnseccasrsinsasssnrssnenn e 40,231
Printer Access Protocolviieiriiiiminiieniisnaranns 133 ReSEMOr.....ocviireirecimmmiissiniesmreneesiiians 116, 185, 214
PrnEr AIIVET.....ocvieiiiiiiienienrnnnrrrnssassssssnennone 2, 72 ReSEITPIOC....ccveieeriiisirenncisnressssenesrrvnessscsnnaes 78
a1 111) - SOOI PUUU P COPISOPP PP 192 ResLoad ..coccvvviveeriieceen e s 50
(7570, ST PP 73,120 TESOUICC......cucirnrvunsnnrennnsensmissinsisranssnnesansans 141, 228
device-independentooviiiiriinniinineaeenn 122,152 ADBS ...oiveeceereiemmrmereeerenrersssstennannan i nnneras 206
JOCUMENL NAMEceeeeerrarmrarassieriacsesrersassnanes 149 ALRT c.oeeris ettt erceercc s s cembesss s s senannsnseanes 23
01, 011 1. OO OO PR OON 91 APPL oottt ecr e bbb s raaea e 29
low-level calls......cocevveiecrinimrniiinine, 124, 192 BNDL....c.cvvorreveremremreenenisisenrrrenn 29, 48, 147, 210
SPOOL/PIINt-2-PALE....cveerierirrmrennrrariessininsscssens 125 CDEF.....ccoeeeeeeieerssessisanneennsssssssmrnenneenssi 23, 196
Printing MANAgerovvvimimmienniinennnennnen, 161 91 10 ORI 244
PrIobDialog ... oorereerricininirrimrennnsrsnsninsenaas 72,95 CODE....ccceiieeirrverarenemeemaceeresossisessnnnssvasesaniens 220
Index 9of 13

Macintosh Technical Notes

CTRL covsieeieeneeeeeesrtnvs e rssssanenrarsasssnsannssssnsens 23
RS e vieiristeiecensvencssenesnnssssraserrensnanissansssen 215
TS T eiitevnceersenseesnasrasrasrnerasnsenssranssnarsanssns 135
|9)) S SO 23, 251
DLOG o iiiiriieiiieecrenssreneerennsrassacanesnnresssussasnnnss 23
BN oovieevritrreessresersseensennsertrsenssersssassssssnsnses 84
| Sy .\ - TN 84
FOMT oo cevverinscensssnnsannsrnrrasssssssnsssnnsassnnns 29
FCE B e einseenevenrnneessrsestssnsasesransrmennsrsonsansnrnssire 198
17211 RSOOSR PPPRTPPRP 167
FKEY ...oonviiriiieresescnnsrmesrmsssrssessanssrasmsassenss 3, 145
FOBJ ..civitvemeeeeeestsssinssssssnssmansrnsrsssssssssnsssaroses 29
FOND....oveiiiieennnirernerssseenssens 191, 198, 242, 245
FONT . rteuncenenncreerrrrosesarrasssssssnsesnses 30, 198, 245
FREFoivseiecreceunisrenrerssssssanssennnerens 29, 48, 217
) (i N 29, 48, 55, 147, 252
| (00 . VO PP 23, 55, 253
INT T oieievessenencsnsrnnesnnrssrsernnssenssassssssnnrssnasenans 110
INIEC 1rvvnereenverancenssesnssssosnsensnssrannnsssasessssnsnnsassan 75
INTL ooeeeeceeiveseenseesraesnennsensaarnssnrsssnsanssannnrans 153
TEIO e aeeveeeeereressennseesscennennsorraemnasssssensensesrsnnnne 153
TE L s veivensveeserenresssssssssnssnnsnssrennssssssansnnsensanenne 153
EE2 . oeevtseinerssernneerserersonnssersranssnssernannsnns 153, 178
511 |, SUTR O VO PN 153, 160
FEIC +rneevnevessancreansrensrrnsencenranensssssssssensanne 153,178
|0l 5 1 N 153, 160
KIMAP oo eeeevtrissesssesenssnnsenrrassssssesssenssnnees 160
maximum number ofoevvirciir i 141
MBAR. .. ooicieiiarrerrrrirserssrmssrssnsesassssssssesransenas 23
MBDF ..o ieeeieeerersaecnesssssecessranssassrrssonssssssennse 23
MDEFoveiiverieeccenerenrnnsssianeans 23, 172, 194, 222
MENU .. .ceeeivierisemeresnasarretrssassassessanncnnne 23,222
ITESI o oveeeeeeesseenarnarnssssrnssnsenseesranstssnsessensarnanre 205
TTESTE e vvnseesssesesenesssssnsnnserrnsnnsastsssasssnnsesssssnnnnen 205
INENT .. covcvenrerissrsnreensenssnonerssssassannes 30, 198, 245
TITCh. . nesevnsnsenssensesessmesnonssnssnensorasrnnssrisssnsassnns 197
OWEIEH ceveeieneeerereenserssrmarsnsssrassasrnssssssenssnssasnnans 23
PACK e ivvsssiseenseessrenssssrsesnssrnsssrssensssrionne 197
PICT covvvieeeieneemsiersnrenscasesvermnnsssassarsasannnnars 23
51 (1 SOUSOOUOURUPPNUOUSURRTRPPPRIS SRS 0 211
POST .uueevvesrinernsernsensarrrsansssnrsassssnssnresnssnararaes 91
PREC ... iiuivtiareciessssnsssessesssnssnmsressssnsrasessansnns 192
TESETVEA LYPC..ciiiienerieiirreersvarssececnniessit e sanaasanas 32
SICN...conieeeeeecrerrrncenreennsrassbnssasssas 160, 252, 253
SIZE....ooiiiieeiverneernressasssnssensnns 158, 180, 205, 231
ST e oiesireeeertseerarrnneansrresasasnrarnasaasrrsansnarans 168
STR covniieeeereerassisssersernsannnrerssonssssernsnnsasnnes 29,48
VETS ooeveesvssnresssanssosresssmsnsseresenssnntebsitassnsssensnn 189
WDEFE ...oncevivsirierearenneransrssssasssensnns 23, 110, 194
XOMDD ..o iiiieiieisiisinesesesranrastarseaassssssenssnsesenan 256
TESOUICE LRl ueeeemnrcriirrecevsnrseeerrrsesansssrsrerecesanananens 46
AT .. eevreenrriraeecernsensiressssssssnsassransansrnsrrssnsnns 61
[ESOUICE TOTK.oovreniiiecriermmnnrrreeeeneernrsssssssmssenasenanns 74
1ESOUICE D ciimerieeiieecerasnsnnnsarssssncanennsnensonnes 23,203
Resource Manager ...198, 203, 204, 210, 214, 232, 252
RESOUTCEPS ... iteecrarsreerncernsssnnncensssrsrnnsssssasnnaras 91
resources, Maximum NUMDBErccuvvvermmnrisrinns 210
TESPONSE PrOCEAUIL .. o.evrrevnreeenmnesssatsisnnnesnannaarevees 184
RESIOTEAS vvreeeceereerrrrrrrersesnsssssessseessassssnns 136, 208
Restore ASWOITI. ... cvvivmeeenccrermnsnienniverrrassersscsnees 256

RESIOTEGZPTOC ...occvvvvrtieerrecisrennesrsnsisssserressenaane 233
1ESUIE COAC..nnirirnnriiriicreere s enerencbe s aaaanes 117
RESUME EVENT.....cveereersrreenserrenmmrinnnrsesasranssssenns 180
(1 5 OO OO UUUPP PR TIPS STy 9
REZ.uuuneeeiaeeeerrneniiisssennsssssassssinssananessnnsnenes 189, 197
RGBCOIOLceviieneecvirissecirereise e sssssnnacnsases 120
rgRTOOBIGEILiviriiininiinre e iinas 193
| I PP PPPPRN 10
RMVERECIENCE ... cceeneeeereerrcennirisssnnniiceneeanraranssseas 2
ROM checkSuMcccccrrniiiiecnimmrsiusiimmssrmmineneennans 139
ROM debUuggercooviievimnicnimnanninnniiinissenens 38, 38
ROM EDHSKS ...covveeevnuenirarissssmenrnnsscannsarsnnranisse 255
ROM eXPanSiON......ccomevesinisinnrisssscsmssnnnssessssisns 255
ROM SIMM.......cocevvniiniiincmriiseneeraasseensnnes 176, 230
ROMBSBS .. irreeiereccstsnretsrsas ssnressssssensans 117
ROMBAESE........cooveemunerrrrmmserresrsssreennssssssssnasssans 100
ROMMaplnsert... 78
ROtEBEZINvvvvieeeriinisiranirerriessanannsssansssisnaans 91
ROMECENIETceeeieeerrcciianrenieniresiinnnrn s asseasesanns 91
ROtAEENU..veeieeieceeenrr e ricnii e ar s e 91
TOULET .evvuuseereernensoresnsssssrrnssssssnnnnresssssarasssnnansnsss 250
TOWBYIES .iveeviieiicrnnmrnis e rr s ssrrnnrv e s pssssennne e 117
TPAZE ..o e 33,72
RUGE DOE ooeeeevinnicnis i e ssssmrs s nssnaes 256
TUIES .oveeeireemenecerrnnesseseenne s s resasssrmsssasaaaneennons 227
TUN-LiME ENVITONMENL......veveemreeireisiriassninnnsnrannenns 240
V(R 1 o, SO U OO 231
SANEcovtviieireerersriiesnensssnnnanns 146, 229, 235, 236
L o SOOI PPRo: 2
SCONOITK ..evviiesiveeenraerrennneasseennssssnesaranrassasssssrnss 96
SCTAPCOUNL. ... vreeerersinennisisiisreseasmenssettassranrsasens 180
SCTEENBILS «..evvvrrrieerrarnnsenerernssssinetnresaencanaasis 2, 117
SCRIPL COUC...ccrirmrirvistnrimrrssts ettt 242
SCript interface SYSeM.......covveeeerisernnsennnrniiinsaens 245
Script Managercccoevvnrernanins 174, 178, 182, 207,

.. 241, 242, 243, 245
SCINBASE..eerurrrrrnnraaaassesassssssssssnnssnrannnnnnsasieessss 117
] 61} TR UUPPO T PRPPUSUN 134, 159

COMMECION .. v vevenarersrensesssssirrisrrernbesassnsanssseeennns 65
BSOS T AIIVE . e eenerecerennn e eeeerecneessnrarrrmtanasseenennan 258
SCSI Manager....coovveriirrreressmannnsnnersannes 96, 212, 258

pseudo DMA ...t 96
SCSICIMA. ... v ieveeriieierraraerrerreeiiassrasnnsassrannaesassne 96
SCSICOMPIELEcoovuvrmeminiiarreneiennarssssssssrnrrsines 96
SOSIGELccceveevrreeeerreemvrinrisreeenstrsererennssssssannaeenens 96
SCSIRBLNG......covvvveeiemmanicireansssesaaransssssssnn 9%
SCSIREAA.....vuveeeeerermrvrrreerrassesseseesseennrsrranssssses 96
SCSISIAL e verevencirreenresaarrernnsssrrenrrrrerassassssnssnren 96
SCSIWBLNGccooeeeeieecerarrin e ceeressansnaresaes 96
SCSTWELLEecvvveneescrnnnneeeermaneessssassssnnrnanrarrassues 96
secondary sound buffer.........oveinnnnioiineinenen 113
secondary video bufferoooeeeciia 113
SEEMENL....rvveesrererrssorisnemsinsnssrnarrssssssssososntssssnnes 53
Segment Loaderovvirmnninnme i 220
segment NUMBETINGcoveerecicmrecrsenninisnninsiinnas 231
SendREQUESL.uveeeseerrieiiisirnnsnrtsssanrssasannaina 250
SerHShaKEcuuuuenrrrmmeerriereieirrerassssnrrnisassneenenans 56
$erial COMNECHOTuevrreerrearirsiirensirraranrrarasssons 10, 65
SEMAl ALIVET ..ueereeerrerennnnnessisirerrarsssasareanuons 56, 249
SETSLALUS ... v veeirrernrercnnnnsssrinnssrrersrransersynenassssses 56

10 of 13

Developer Technical Support Ociober 1989
SBIVEES.eeeuuerrresressrnaesnnssesssssnseesssnrssssseesrrssmsesssnans 20 SPCONLIE ...ocorreeneirrrccscitiirnseren e aeas 224, 249
T 7- N TSP OPT PR 208 splash SCreenccocereeemriirnemmninn s sniea 180
SEtASWOIIcovnvermneerrirer e e e e e 256 SPIING.......ooueeeecreiirrirnncrr e errrt e ranes 91
SetCValueccocovveveercenrecrrrrrrrrms s 197 SPOOL-A-PABE ..o reerrerrereaciiiei s 72
SetCurrentASccovveerecrrecrrrrrrrcrmnsiii s nns 208 SPOOLEL....cceeeieerrciree et e 133
SEIDIEM v ieeeaieeerienneereevenreenrrasasrreesasreeintrrrssss 34 spooling PICT.....cccooiiiiiiirccccrmeennnniiisssssnssnnnnns 154
SetEventMAsKvveceiiieiiiiiiiiraneeerr e eeeeen e 202 SQPLiO...ci et crrr e e s 257
SetFractENabIle......ccovvvviiviiminnisiiinrnerissnnsannsresees 72 SRQ . iiiiiiiiriiiii et cnn srer e s e sn e e 206
SetLineWidthcovveirriceiiniinec i 91,175 stack handling.........cccvvireereesecscicnccnsccrrmnnneenesins 208
SetMenuBarcovviieiiii i e 180 stack POINIEI.......cccoviveeemermmmmimnsiisssererirrrsrescans 208
Y107 741 | DO P U 72 stand-alone COOEeeeirecirnrmneniine s ensreraeene 239, 256
SetPAlEUE ..ovveerirrecrnemmaassssrinrsssnsanseisaesreeresennns 2it Standard File.............. 2, 44, 47, 77, 80, 126, 204, 238
SEtRESALIS. ovvveirerriersreeenrssrsmsnrssssnsseanssnnsssssrees 78 standard identifer field.........c.overriciieiniiiiiiiiinniinea 209
SetRESLOAM. ..oererreeimennrraesseerrensssnnsnssssaserenversssane 50 standard string COMPAriSONcooveeiieiineiicrinenenns 178
SEIRESPUIZE..cccivriarerririniniiiicc s 111 Start MAnager.........cocmeeeiienieninnicenvsnnsnnissens 230, 258
YT 1 S U 128 StantSound.......cccoveeciniininin i s i9
SeITrapAdAressccovervviirriiiniennns s, 2 startup application.........ccocciiiiiiiiiiiennn e 2
SEtUPAS «.ivvrenccreermmcereer e s ecsasss e rmsan s eern e 136 StAMUP AisK ..ccueereiirre s e 134
SEMPAST ...eeereiieiiesisiira e ens e 208 SLALONETIY....ccccieeeererrrrneeirrereereresssssnsssaessnssnns 115
SEGELFIle..ccvvirvrrernrrecarmreecssrrcnesanons 47,77, 80, 107 StdFile......coeevvmereeremmeeeerrcmrectisssiniiiissrinssanans 203
SFPGELFIlE...uiiiireeeeicrrerriiersnisies s ssssnnees 47,80 Stereo SOUNdceeieiiririiinnnieni e b 230
SEFPPULFIle. ..o ceeirreivicins e vrceerenner e banaananaa 47 SHIDOWN.....cccrrreeern s s e 194
SFPULFile....ccoocovsiiierrciinssnennienes 47, 80,107,226 StringBegiN.......ccovceeiiiiiiniiciinnnnis s e 91
SFREPIY...coivimmriiiiiinmisininne e csneene e 44 StrngEndooooviiiiniiirrin e 91
SFSaveDisk.......ccooerevrieerermmessiissisnserniannrsssinsenas 80 StingWidth......cooocvviirmrneremimreimcn s, 26
shared biL.........ccoeveniereirenenncnrrene s e 116 SIPADArESS....ovviaeirrcciinrr s rreensrrnnasns 213
shared fileocoiiiiiiic e 116 Style .vvveeereeerrce e e 207
shared PrNter.........ovrieiivisacrini e ieaeee 125 styleattributeccoccecieii e e, 193
sheet-feeder 33 Styled FORIS.....c.ccoivccicrnmiiiriitsisssssnnnnrre e 198
111 | O SO UU OO RRS 126 Styled TextEdit.......occeeeeireee i isssanaesnncranes 207
ShOMVErsion.....coovevveveeeeeenrrre i niisiesss e 189 sublaunch........ccccomiiriciiiiiii s 126, 205
ShowCoNtrol.........cooiimiriirnrii e 197 SuperDIiVe.....ovvviviiiiiiiic s e ssani e 230
ShOWINIT...ccnerriiee it eerrsn e ss e e e 247 supervisOr MOde.........ocovviiiiieiiiirm e eesreenee 2
SHOWPAZC.ccieeeeeeeecce vt cvirtrrta e e e 91 Suspend event.......cccimrimiinnni e 180
SICN ..ot en e raara s s esaee 252,253 swapping MMU mode.......coveriimninnrrrenrinens 228
SICALISE ... cveeeeerrrnriiirssernrnneressasessrsssensnrnnessnnanes 252 SWIMchip...coooricirernn it sassaenanane 230
SIENALS ..o 88 SWILCHhINE.. ottt 180
SIENATUI. ..ciceciiivniererreeeimreeeeaesrrncnsssissranansees 29, 48 MAJOT.cceveriireierierrenierreassseranseseaanesssassnsnsusinssss 180
SIMM....ieivirtrrrrersocnssreerraissssesesnssessrassrrenses 176 MUTIOT. ... cciiiiieeiierrreriosssssisesas s eernansanasssssnns 180
Single Inline Memory Module............coooviiiiinnennn. 176 UPAALE ..o cerreeccss e e 180
single-sided disk.........cevevriinniiii e T0 SYSEQibceencreeeeceivrivinriniiiiniin e 215
SIZE...eerereeerirrerrsreeesiscecsrenasesssssessnsssinens 205,231 SysEnVironS..........ccccccceiiiinne 67, 103, 156, 190, 207
$ize MIALON ..e..eceeieeiinin i rraiicc s rrerna s 237 SYSENVRECcovviirveiininicine vt e 129
SIZE IESOUICEceueeniraniriisriiiriieennresaessnisaannanns 180 systemermor33.....cccciiiiiiierrsr et e 151
SKIPPY . urvarrerrerennnisssssersensussisasissssrsnsenssanasssases 183 system fONL.......oooiiniiiiiiiiniin e, 191, 242
slot interrupt queue element...........ccevvvevnrnersncens 257 systemheap ..., 81, 83, 113
SIOL INLEITUPLSccevemerrecriivareniiii i seee e 257 SystemEdit.........cooiiiiiriiiminn i, 180, 215
Slot MANAGEr........ccovvveirmmrrennnneerrressnessrecssannnen 230 SyStEMEVENL.........ccocovveimmmreiiinrrnniersnsrmsiscnsess 5,85
SIOt VBL MG ..oeevreeieenemieniniiiss s e srrassrananes 221 SystemTasKcccoverrevsiimriineiiiiiiicnienneeesscanannens 85
SMALl ICONS ..evverinnniiiireerrrenrsssnsrrcerrennenns 252,253 SYSZOME..coeiviiieieireeerieniisia st sessssssarreans 2
small iCONS in MeNUS...........ccoiicriiveeniiisenniisnanens 253 BAES veereiierrirren e s e e e a st ana s 94
£511 181111117y + ST TTe 245 tail patches.....oommeeeriviiiiiiin e 212
soCket liSteNer..........ciiiiieiiiininnnrneesanesnn 2001 Talk RO......cooiiiiiiiiiiiiinissennsrsennnesesnsssesesennns 206
Software Licensing........cccocorreeerrmiiiisisninnans 198,206 TANSTAAFLccciiiimriririrmecnss e sssseessemnaesnnnnns 203
SONY AOVEL ..vvvirvieeiiiincisisisnirenseenecssvnennes 28,70, 81 teCarHOOKccoreemmmcemmiriss i 82
sorting, international.........coveeneniivenieraenennns 153 TEContinuousStyle..........c.cooiiiininisiieemrsnninannnn 207
SOUNKE . ..ceeeveeremniresraen e s saisrisssaassssssanssssenenes 19 TECOPY cevcrrerirrrcrasrreernnrmsssessisssesseensenssssssssssnes 207
SIETEO 1veeveeerrannnenarranereenenesnrrsnssssbbssbsasanssnsiinaen 230 TECustomHOOK........ereciinrcecnins v irrness e 207
SouNd DIVELccecivrierriiiinsis s ciesererensssissireneas 19 TECULiiiieci i iceriisssnsissssssrennassssssnsssnnns 207
Sound MAnager.......coeevrireemmmecninncnninnenne 19,180,212 TEDEIEIEcvvveeiereeeeeirceinercmrcerecs e ssss s s s nasanas 207

110f13

Macintosh Technical Notes

TEDISPACHecvveiirrrereeeemieeeemeeecbiieiisrinnirnnaranrie 207
TEDOTEX e ceeeeernrieerrreeeenissassnsseissssssrrrisissesssnns 82
TEDAWHOOKccceeeeivreerrnneevrrnnrrrsssneineseenaanenss 207
TEEOLHOOK.......ccvvciimiveninrecrrraensarssisesenenesaneen 207
TEHANAIE.....coveriinmrrrsenssssssinnsmnemsiessersassnns 207, 251
115 115 (210 SO 82
TEHITestHOOKccvervenrreerrrarvmmmeeniiicineinesianes 207
TEHOOK ..vvviviermnnnccrrmnmssssisirsinssrmrsssrarsssrrsssseanns 207
TEKEY ...vvuvnennmnmmennemmmmcaressbbssssnssnisnssmssassessnnnne 207
ELength.......ooovniimnieimni i e 203
TELength ..ccovveerrireviereccececcsiriiss s ren s seesse s 237
telephone-style Jackccovviiviiiiceimiennrinnrnneeeenecee 10
Temporary Memory Allocation..........cocoveevieirerene 205
TENUMSEYIES. ot srers e e e e amaaaneas 207
TEREC...ceveeerirrrerrererosrisssasissssssssssssssnnsssses 207, 237
TERECOI.....ceiearcrrrirecaceaerieniissseeeeeennnnnnnasssssans 207
TESCIOIL.. oo veervrreirreceeernsccrns i seeesana e 22, 131
TESCIpLengthoccvveeieivreicece it 82
IESEIRECE..e.crirernnecrriarnnssinrnereserereessssnssnsniisraanras 82
TESELSEIECLciiiieeeceriararrererr s srvbassinenaa s eeenns 127
TESEISIYIE .vvvrerieeirrcerrrerrniss s renrneennees 131, 207
TEStyllnsert............... 131
TESLYINEW...ccvieiincrneennmeinininsisnnnrneissirssssssannnns 131
TEWIdthHOOKcceeeeveeviironsesesmmecnmmmnnmsonmncennenns 207
EEX e rrrrurrereereencerannnssanersanssssnreernnnnnssesssssossassnrenn 207

o) [OO 207

FEALIC 0 v eeeeeeireeermmeres e e b s s srearier s rsansssensnaanens 207

PlAIN.....cciiriieen e s s 207

F 141711 14) | JAR OO PP POPIORS 91

SIYIRA....oeveeeecrrecti et s 207
TEXT file..neeieieeeeereeemraemiressssaenrasnesnassinsssseeneeee 84
TeXIBERIN......iicerrersrensrrssneiiiiereeesaannarssnerseeraas 91
TEXIBOX .cveveverrernmcerresnnsssssssnismasssssesinnnnsnns 72, 207
TEXUCONIEL 1. e eeevarerearrennerrrnnesssssssinsssssrnuseanneansas 91
TextEdit 22, 82, 127, 131, 156, 203, 207, 237

dala SIEUCHIIEScevvrrereneamnnnrssssseessnensnnsssrensraes 207

System 6.0 ...coereccr e, 207
TeXIED. .o 91
TextISPOSISCIPL ...covivviiiracciiirretiirsris e nese e 91
TeXESEYLE. ciuiriiiriiiiiirseene i e 207
TextStyle (SFACEccvvueveniiicirisrerrsiinis e eeneneanns 207
TGetRSIBIK......coovviieceeiisiirissnnenmrrnverensssseseenins 173
The Natural Order of ThINZS.......cccoveiimruiarinrnsenaens 256
11,72 203" o SRR 25
thought pOliCecocevimiiiirirrirrcecn et 117
11101711122 00111 PP PR U RURS 196
THCKS wvvvnreeeciereerversarssnnssssrssssssasnsnsinssrsnnsssnnsnnns 227
¥ 1 0 2O UOPUTRN 250
Time MARAZETcvceveeererrcriereriirimriesissene 2, 180, 180
HLMEOUL vvvvrraseereienrerennonssosrunssssssssirsrnsnsssssasnanansrens 9
147119117 S5OV PR PR 221
(7 ¢V | PPV SPON 247
TIMON ..cirereeeceiremercseerrernrerarrssssnsssnnsessasasssssnnens 7
IMWDOERT ... oo o vviviiieireeeerressssssnsssrsssssessssnsenns 126
TOKENTaIK ...coeeeeeeireieerrrieirssniiisss e rrer e 250
TOOIBOX 1vvvreeeenrnierriiceeereenanssssrsssiinnissrannns 221,229
TOPS aeeerceeerreeeeriisissesssanrs s assasrrneusansanes 186
B8 25 3 0] 1 SO S PP 95
raCk CACHE ..o vevvvrereerccmmes i e r e s e eenennaa e 81
TEACKBOX ..ccvvureerrnerssenessssaassrassnnssirmrermerereassssnnes 79

transaction ID validity...........cocorveerenreeenmmnnsciinnn 250
TRAP ...t e esrsssia s ccsr s e ansaas 2
rap interface........ccccovnereninnnnnnnreenereeciinen 227
trap patCh.........ccoiiiiiiiiii s 25,212
TREl TAMET..ve it irrrcreee e e e eennaes 250
TV W . iieeceirrirenreereresnnrieressasrsesernnssrsesrensnsssenns 239
(5.9 2] 1 | P OO PP OPORRTTUI 242, 245
undocumented.cccoeevnirrinnr i 227
11 171.4) PO 215
Unimplemented.....ocoviirreccininsinieniosiensnssrrreries 156
UniquellDcoooveiimmiiiinrcinrrrivnnriiscrce e 198
UNLL ALENLEON, .cciriiieerreeerrcrrscrsereenancarrrrmrmanssssniais 96
UOEE TADIE ... eveeevrrrrccceeetrce e cr e rr e rreenuns 71
UM e eeernsevrrvrrreesscasnssrasnrasssreennesnsansrsrsssssnosbanass 229
UNLEK . coeeeterrreeerrriiirsiesssesnessssssssas soranssnasssessiss 88
UNHUSEA...cuvnrrennaerrerrrrarrrasessisssesssissenassssrmsssnssass 227
update SWItChingc...coooiieiniineinininnrinnen, 180
UpdateResFilec.covrcerierrviiiiiiissiisnnnens 116, 188
upgrading MemOTY....coeerinivirmviriisenssrmmerneeesaes 176
USEE JBIMS covvvvuverensrennnrreenneernassasssenssssermarnsesssnarens 34
USET SLACK POINIET ...cvevceviavrccsisiesrnrrenrnsanssensnssresas 2
User-Interface Thought Police.......ccccoovmmanniiririsnea 180
1 (71 | U UOON 203
USP civiiiiiieeeeerresneeeessieressnnnssassneenansrssaatbssssrans 2
UTAbIEBASEcevviieierinernnisresesasanneerssansnranrernns 250
VBL InteITUPLS.......cvriruerrerrrssssascisssnniessasiarerneces 221
VBLAASK ..uveiiueereuierrereriiessriarresnsasessesnsssssssssnans 180
VCB QUBUEL.......ccomusirrrrrmtmretessiisisninnaneanaanass 24,4
VCBDREMNUM ...c..eeevvverireenrrrcvensrrsssisnna e sana s 106
VEDDIVNUIM 11veeiieeivrnirreeeeracrnnenraanissssnrernnasssnns 106
verify flag indicator byte..........oovviiiern e 225
L 1111 2 - - PO RUUP PP 225
VEISION .vvvvirverreneeeeenssianeennensrmansssessassrsssssssrsnnsan 189
VErSIONREQUESIEd . .vvvveeiireiissisnnnersneensisereranssnananas 129
VEISREC it ireeerererrrerrsr et sns e ranna s 189
VersRecHandle......cccccoovvirieemrnrennmneennnneeeniinsinnn 189
VerSRECPH ...vvviiviciiiennrriecenneensrrrrrncssssn s ereasies i89
L7 7. NP PP ERt 2
VIABASE ... ccceveierrnvrrrssesnncssanssnsssssasssseessasenssssens 117
VIBCO DUITET ..o ceeeeeee s eerr e ee e s e srraes 2
VIdeoCard.......cvvevviiiciircrrr s e 144
VIEWRECE .cveiveerrrec e errrers s aan s eess s eran s enaesans 82
Viral INfECHOM .. uereeererrerercrreenrrerssrransrensessaanns 231
virtual key code........... 229
VIrtual MEMIOTYvuveerseaessaeensinsisnntrearnrrressenee 203
VISREN ..o e s nanee e 194
VOIUIME....ccttnureeinnnreereeeerreeesnssstnsaerarainseeens 24, 106

OFfNG 1 vvvieeiiineierrnarseerrecrrreearcssssensrereaannans 106
VREfNUM.....ceeeirvemmmmemisssn e 44,77, 126, 238
WaitMOouseUDcovvnreecrinnin e rennin e rver e e 194
WaitNeXtEventcccceeeemnerrnrsniinniinnnnes 158, 177, 194
WAITANLY .oevvvvrrenisieeeimmmmasnsansrernnasanissrrssansessannes 176
WDCB ... ivviiierreveretsvestscssassrrasssnnssssosssannnnsssssen 126
WDEF ...ovviviiiiteeiievsreneaeannerrraiasisss s senasssns 212
Y] B ORI 72
WDPTOCID . ..cc.uceveeerrrerennaserrasranrossnsesrennssesavansas 126
wdRefNum............ - N
WDREMNUMvveevvrrreesseenieerreniireensrraanasmmanssssses 126
WA tADIEevv v eveee e e rr s vseesenas s cce e s e ran e 92
Window Managercoooveiimiieninniiss s, 203

Developer Technical Support October 1989
windOWKING.........0cinvrrernriineineerreereeerennnaerrossins 5 MFTempNewHandleooconniinreneniinineneens 205
WMEIPOLLovcveeieieciiirceiee s seraea s errees 53,194 _MFTopMem.......coovvririnnirrciciiccreanrecarann 205
word-break table...........ovevivenviiinnirnrr s 182 ModalDialog.....ccccvvmeeiriiinierrrrcnirsacinsnessiannes 248
working directoryeeeuummreiiienens 44, 77,126,190 NewHandle.........ooooveiiiniiininininiinirensesneanens 205, 233
Working Directory Control Block.........cccveveenee. 126 _NEWREN coocervrrrr et s e es s aeseens 193
working directory ID.........oooeireeremvnciisnnnnesnenneees 238 _NGefTrapAddress........ocoeuimmeeriiecinennnninnernniniess 212
WVTHBE . oveiiennnnnssnsnsscennssnnserssannnsrennsnsssssseensannres 187 NMINSHAlL...occvviievemernnrnrneernerreevsissseesnrsrsrerens 184
WIHHELAP . . oieeci et venviirresrcrensassssssnsanserssansrns 250 _NMREMOVE....ccvvvereeeirnererinsremnsiisrresrrrrrsssresnss 184
WILERESOUICE .uvvvvnensrrerreneasssssssssnseenesnannns 111, 188 _OpeN.cciicccicicc e s eae e 224, 249
). (0. 1 2P 256 _OpenResFile......oiviciiirireccc s, 232
XPWIL ooeiicicirncernrcsssss e rrnsrtsssb e sn s s rrsansananes 229 OPENREPEIM.......oooiiiiiniiiiininiesnnnasaennnnnnniaaas 232
KPWEY coecrvcisersiasissres s sssansansannnssarsesnana 229 OpenWD......ooriireiee s rsaeae s 126
A | PPN 9,250 _PackBilS....ccoovriremneernnnnnniirissssenisasnnarnneeses 86, 171
zone information protocol...........cocvimseenieenenees 9,250 _PBCatMOVe.......oiiiiiiiiiiniiiininccssssnnnnnenarrssaes 226
ZOOMRECL ... vrrririsiieiesneerrrninessereeeassssrrriinseenes 194 _PBGetCatInfocoevveerreeeererrnnviniisssissinsannsvnenens 238
ZOOMWINAOW..cvveuiiiiirirrarrrsssesienecaresiennennnaseens 79 _PBGEtVINLO...cveeeeecieecinrcreeescsneaacmrnceessssesssrnnsn 229
CADBOP . irire e amsasans s s s a s 206 _PBOpPenWD.....cccoiiiiimriiriine s e 126
_ADBREIMILvvverrinnsrerromcrrrrrirriisrerrrarsssasasianaes 206 _POSIEVENL ...ooeueiiiianrreerreenrerrsrbbosisssnnransssrararans 180
- XL | OO PPPUR 248 _PrCIOSE couuviiiniccnnninnsseeieiereen e ser b s ana s 161
LBIECIE. ..o veeieicceccie e e e s aes bt s aaa 248 _PrOPEM.cucciveeeeeiieceecmreceenretisnsriasiss s sesnmnanesens 161
B - L] U PUUUO PRI 248 B 51 601 TP 193
O 103, £ 1) U U 193 PUrECSDACE. e iiciarerrcrsssssssssssssrbbtarsssnsnnns 229
_Chain, ..o e e 126, 180 _PULSCIAP....ccc s ittt siss s eereerar e a e 180
COlOT2INAEX.uuveueerrrnnnrnnarenssennnnarrssnnsssssssssssasnnnn 229 RecoverHamdle..........ccooenmeininiiiniiinininnnnnnnn, 232
_COPYBILS ... 120, 252,259 _SeleCctWIRAOWccovrveiiiriiiiniiiremr i snn 205
_CountADBS.....covteermrcrireenrisiiisisssrsssaasssrsacecs 206 _SetADBINfo......ccuueeereeeeeeeersrnnnisi s 206
DAL .eeeeevve e e e 93 SEUCCUTSOT «...vvvveiirirrenrrernnsersunermanseseenssssssnannes 244
_DialogSelect . ccoii i e 251 _SelEDVIrons......cccoviiiiivcnmrinineresssssinnnene 243
_DragGrayREN. ..ttt s 193 _SeFPOS.cccce v iircicsree e s s e 246
_DragTheREN....ccovnvimmemmnrniiisnsiinninnrereansnscsnsnnnes 247 _SetGrOWZONe.....ccceeiiiiiiiceiiniiniisienasnnenrrees 233
DIaWPICIUC...vvvverrrineeeeeerernerssrsserereessereenensensnns 259 _SetMenuBar.......ceeeiinne 180
_EventAvail......coeevrvereecemmmmnieeririe s ensssens 180 _SetWRefCoNcovvveeeriirreer it enesa s 227
_FOMI2SCIIP . . ccrrirrrirsienesn s e raanneas 242 SEtZOME .ovveeinneeirinnnserereeneanerebrnbatassasasssnnneaeans 248
_FONLSCIIPL. e vvreeerereerrrrniiseiieinie e esssnnrrnans 242 SFGEtFIle.....ovvieeiriiiienn et rrisessannansrnens 205
_ForeCOolOrccueeieemmnrcreenrn e vsinnas s enve s s aeeennns 250 _SImInstall........coccerrermmmmeniiiernisiererrrreesenans 221, 257
_FSOPeN.....iireiiris i s e 246 _SlotVInstall........coovrrrrvrmiimicneerana s 221
CFSWIILCauniiiiiee e eeeeriesrsr s rssees s s i s s ssse s s srsnans 246 SIIPAAAIESS ... ovvvrveecermeereenersissiriinna 212, 228, 232
_GetCPIXEL...ccceeeeririrrisesserrerinsssssss s s eeaainssnaas 229 _SwapMMUMOde.......ccoocvcrivtisiirirnnirsssinseananend 228
_GetCTable......veeerrreeeriiriiiiinieeee s neenns 244 _SYSBee .. e e 19
_GELENVIFONS ..ccceeeeveruiiiiereerrasrmneerrossiaseinaransranes 243 _SYSEdiLi.ueereccecerirecrn it 180
_GetIndADB....oooovirrecrissssisserianccsessssasssnsnnn 206 _SysEnvirons..120, 129, 184, 212, 230, 236, 249, 250
_GetNEXIEVENL ...ccccvunuiieerrniienresiniiiisiessenrans 180,205 _SystemTask......ovceiriivinrnenisniinrannierinassseseseecns 248
_GEtRESOUITE ...ovvvrrrreeaerrerrrernsssessssassessessssssnsnnes 228 _TEIdleoeeeeeiieieerreemreenressseiessieninnenrinesaearaenes 251
_GetWDIRIO......eeectiierressaermsnesese s nanessanr s 229 _TENEW .. .ciiceeeeveresvncnnnnsrersssrrsisssenmamnanmsnsassarnens 227
_GetWRECON....ceeerrerrrerrsiiiiiic e ran e 227 _TICKCOUN L ..\ veierccinsrnsmeerineeerrrerr e essssssnnnnes e 227

GEtZONEC. . ceeeeceeeeereeianreenasseressiss i snsnsaessnnenes 248 _TrackControl......coceceimniimniimnnremnmreiinenesiniveseane 196
_HandleZonec.cveereerrnseseesnsnnsssseresenenmssnnnnes 248 _TrackGOAWAYccrveermieiiiieninis e cnesnennnennrreesee 247
_HandToHANd.........oovvrreemeemreennsinnnnsreennrseeases 227 _UROAREN......ccoviivmiviiniisincinerneeinaesssnrnnnesnasan 193
_HideDItem...........vecicimmmmnsssiiiiisinnrnieninnannaeen.. 251 _UnmountVol....coccoeeemirneniiniinssrrmmmsmessesnnens 180
CHWPTIV.voviieeieccrceceveererarmrsrsssse s en s ss e sraasses 261 _UNPackBilScccovemeerreemrecnisiiersinrnerissssannan 86, 171
_Index2COolO0r.....covieeceiianrmrssiisssssnsrersssesssssnnrenee 229 _WaitNextEveNl........cooviinnceiecisnnenninns 126, 180, 205
_InitGraf.....cccceee e 223 _ZeTOSCIAD . cciveeeeeerirriiiir e e e e 180
_IntWIndowsScovuvveiecerraerririic e e annaneeas 247 [SLOAD]uireirresiriinianrensonvesersssveresaasessnans 93
_INSEtREN...ooviiriinirnn e i e 193
B0 113 Yt 7 o] SO PP PP 242
_LaUNCh coceecieeie e sr s s 126, 180, 205

LocalTOGIObAL........vvevivrrerrecnnsnerrnressreernnannenes 120
MAXBIOCK cvvvrvieeie e eeeeereenre s e e s 229
_MenUSEIECE ..ovvvriirseeriice i e b 180
_MPEMemTOp....cccccconreccrnrsrsmnenisnnneniiisraenssaasennes 205
Index 13 of 13

Sample Compatibility Script Checklist

Tester's Name CPU Date
Application Name Version System Software
SF MF* SF MP
Set Startup Tests Alert Tests
8] OJ Set Startup to application (3 O Restart with unsaved document open to prompt alert
[J O3 Set Startup to application and DAs O O Save to a full disk
O O Set Startup to application’s file 0O [Save to a locked disk
OJ OJ Select About the finder and verify application’s
memory size allocation Font Tests
[1 0T Select & use at least two Macintosh fonts
Application Tests 0 O Select & use at least two LaserWriter fonts
(J {7 Open as many applications as is possible O O Select & use at least two LQ fonts
L3 L3 Switch layers via Apple menu, icon, and activating [[Select & use at least two third-party downloadable fonts
windows 0O O Scale fonts
O [T Create a new document 01 OJ Use large fonts
{1 [Save
O O Save As Printing Tests

O O Save in different formats

P : l. v
01 £ Use any sample documents O O3 Printa document from the application

O O3 Print selected pages

0O [Close
O O Change P to: lan Enlarged, R
0 0 Quit cha S%eo r?ge Setup to: Landscape, Enlarged, Reduced,
0 O Open multiple documents (J (3 Print in Background to LaserWriter
01 L Copy, Cut, Paste O O Print in Foreground to LaserWriter
0 O Undo _ O O Print a document from the Finder
0J 0 Use Keyboard command equivalents (3 O3 Print to all Apple Printers (see Printer Matrix)

O [3 Paste graphics from Scrapbook !.
3 O Select About (Application) from the Apple menu Additional Tests
01 [Select About MultiFinder from within the application o0

[0 02 Open all Apple DAs and use briefly als
O O Open several third-party DAs and use briefly 00
O [Play with windows: resize, move, drag offscreen on

0 OJ Open other applications and switch between layers 00
O 03 Use application's text editor to: change font, style,
size, and 50 on

0O O Use the Arrow keys * SF = Single Finder, MF = MultiFinder

System Tests

0] (J Use Disk Init Package from within the application
0O O Use Standard File to call Disk Init Package

00 O Use Standard File to open a file

O O Test with RAM Cache On

{3 [Test with RAM Cache Off

Developer Technical Support Sample Compatibility Script Checklist 418

PR
Wt
st

Oper (}mup

Sample Software and Hardware Matrix

NAME/CPU
Name CPU Application/Version Date
SYSTEM HARDWARE
RAM | Internal External Internal External Monitor Keyboard Mouse
Hard Disks | Hard Disks | Disk Drives | Disk Drives
8 20MB SCSI 20MB SCSI SuperDrive 800K Standard Standard Standard
5 | 40MB SCSI 40MB SCSI 800K Color Extended | Low-Power
4 80MB SCSI 80MB SCSI Multiple
2 | 160MBSCSI | 160MB SCSI Two page
1 Full page
SYSTEM SOFTWARE
DAs CDEVs INITs Printer Drivers Fonts
Alarm clock General AppleShare WS AT ImageWriter Macintosh
Calculator Color MacsBug 6.0 DC ImageWriter LaserWriter Plus
Chooser Keyboad Responder LaserWriter Q
Control Panel Monitors MacroMaker LaserWriter I1SC Adobe
Find File Mouse Suitcase AT LQ ImageWriter CassadyWare
Key Caps Pyro DC1Q ImageWriter
Note Pad Sound PrintMonitor
Puzzle Startup Device
Scrapbook
System/Finder
System
Finder,
PRINTERS
LaserWriter AT ImageWriter I DC ImageWriter II .)
LaserWriter Plus AT ImageWriter LQ DC ImageWriter LQ Circl dpfions
LaserWriter [T NTX DC ImageWriter 1 8 in
LaserWriter II NT DC ImageWriter 1 15in, AT = AppleTalk
LaserWriter I1 SC DC = Direct Connect
Developer Technical Support Sample Software and Hardware Matrix 419

~an
U
et

International Software Development

This document provides a brief overview of the guidelines you should follow and the
tools you will need to adapt your products to international markets.

Developing for International
Markets

International markets may be viable ones for your product: therefore, it is important
that you understand what it means 1o develop a *localizable” product. Creating a
localizable product is making sure that your product can be easily translated into
another language. It also means adhering to country-specific standards such s time,
date, currency, and sorting sequences. During “localization” your application and its
accompanying documentation are translated and adapted to a country’s culture and
standards (for example: right-to-left or left-to-right text handling, commas versus
periods as decimal separators, and appropriate currency symbols).

The ease with which a product can be localized will vary depending upon
the overall design of the product. Placing text in resources is one of the signs of a
well-designed product because it facilitates the localization process. Apple has
created the following tools to facilitate the design of localizable products and the
localization process.

Tools and Guidelines

International Development Support

* The most important rule is to follow the programming guidelines set forth in
Inside Macintosh, available from APDA™ especially Volumes 1 and V, which
contain calls to the International Utilities (date, time, number formats, and so on)
and to the Script Manager for Roman text handling, such as French, Italian,
Spanish, and non-Roman text handling, such as Japanese, Arabic, and Hebrew.
Also included is a section on the International Human Interface Guidelines.

o Other guidelines can be found in the alpha draft of the Software Development for
International Markets manual. This manual, also available from APDA, explains

- the things that you need to consider during the design stage, as well as which
. tools you should use during the development phase. It also describes the
localization tools and how to use them.

* The Localizability Checkiist, following this document, is a guideline for world-
wide product development. It should be used before, during, and after you
complete the development of your product to make sure you are addressing all
the localizability issues. For detailed information on each item or area, refer to
the Software Development for International Markets manual, available from
APDA,

* In addition to the documentation mentioned above, you should use the follow-
ing tools:

Script Manager Developer's Package

The Script Manager Developer’s Package, available from APDA™ contains docu-
mentation and tools o aid you in writing and testing applications that are
compatible with the Script Manager. The Script Manager allows Macintosh
applications to handle Roman and non-Roman scripts correctly. It also supplies
a number of routines that aid in text handling in general. For more information
on Script Manager, see the Script Manager document in this section.

Intemational Software Development 51

S
e

ResEdit

As Apple's resource editor, ResEdit allows you to create and edit resources such
as menus and menu items, strings, icons, windows, dialogue boxes, and alert
messages. Itis used in the localization process to translate resources. ResEdit
is an indispensable tool for all developers, and it is also available from APDA™

Localized System Software

To ensure that your product is fully localizable, you will need to test it with one
or more foreign-language versions of the system software. Apple has released
25 localized versions of the system software which are available from APDA™
When you are ready to market your product overseas, contact Apple’s Software
Licensing Department to license your system software.

Glossaries

The foreign language glossaries provide the translations of the most commonly
used terms, such as menu, edit, and cut and paste. You will find the glossaries
on Phil and Dave’s Excellent CD available quarterly in the Developer Programs’
monthly mailing or on the AppleLink network [path: Developer Technical
Supports Macintosh: Tools: Translate it!] The languages that are currently
available are Dutch, German, Finnish and Italian.

Technical Notes
Macintosh Technical Notes contain detailed information written by the Macin-
tosh Developer Technical Support Group. The notes expand and clarify
Apples documentation, including efrors found in software, hardware and
manuals. They also contain commonly asked developer questions.

Of particular interest to worldwide product development are the
following international specific technical notes:

138 Using KanjiTalk with a non-Japanese Macintosh Plus
153 Changes in Intemational Utilities and Resources
174 Accessing the Script Manager Print Action Routine

‘ 178 Modifying the Standard String Comparision

| 182 How to Construct Word-Break Tables

Technical Notes are available through the following channels:

* Developer Programs’ monthly mailings

* The AppleLink network, Macintosh: {path: Developer Technical Support:
Macintosh: Technical Notes] Apple II: [path: Developer Technical Support:
Apple I1: Technical Notes)

« APDA

Support Programs

International Development Support

The Developer Programs and Developer Technical Support groups at Apple are
committed (o supporting your efforts to create localizable products and to distribut-
ing your products overseas. So that you can benefit from our experience, we
recommend that you contact us during the design stage of your product. As you
approach the distribution, marketing, and localization stages, we will also make
sure that you receive the support and guidance you need from our interriational
subsidiaries,

Intemational Software Development 5.2

Cae
Wt
St t

Localizability Checklist

The following checklist is being provided as a guideline for worldwide product
development. It should be used before, durin , and after the development of your
product to make sure you are addressing all of the localizability issues. For detailed
information on each item or area, refer to the Software Development for nternational
Markets manual, available through APDA™

Text contained in the application/DA/driver/and so on
The following should be in resources:

ALL text (including special characters, delimiters, and so on)

Lengths of string and text resources

Menus and power keys :

Character/word/phrase/text translators (tables)

Address formats, including “ZIP” codes and phone numbers

Text data compaction, encoding, and transmission must allow character codes
from $20 to $FF to be used.

When creating your resources, keep in mind:

* Text needs room (o grow (up, down, and sideways)
— Translated text data is often 50 percent larger than the U.S. English text
data,
— Diacritical marks, widely used outside the United States, extend up to the
ascent line.
— Some system fonts contain characters that extend to both ascent and descent
lines,
* Potential grammar problems (error messages, “naturat” programming language
. structures, and 5o on).
* Text location within a window should be easy to change.

Text handling
Use the Script Manager for:

* Word Boundaries (word wrap, selection, search, and cut and paste).

* Character Boundaries (search, replace, sort, word wrap, backspace, delete, and
cut and paste).

* Right-to-left and mixed-direction text (justification, cursor positioning, highlight-
ing).

* Displaying font names in the proper font,

International Development Support Localizability Checklist 54

Remember:

* Use TextEdit and Dialog Manager for all text handling (preferred).

* Font#0 is not always Chicago.

* Use systemand application fonts (0,1) when the user cannot select the font.

* Avoid hard-coded font sizes (if you must, use 2 font size of 0; otherwise, let the

user choose).

* When using fonts to provide symbols, use proper font ID numbers as defined by
International System Software.

Formats and special symbols/words

Use the Intemational Utilities for:

» Searching

* Sorting

* Formats and separators for:
— Numbers (decimal mark, and so on).
— Dates (short, long form, calendars—European, non-Gregorian).
— Time formats (12 hr, 24 hr, AM/PM and so on).

* Units of measure (cumrency, metric vs. nonmetric),

Additional data that needs 10 be localizable

* Keep in mind that some countries perform financial calculations differently.
* Graphicsand icons (mailboxes, champagne bottles, and so on) should be in
fesources,

Additional issues
Use Script Manager for:

* Properly changing the current script and the key script when needed.
* Changing the case of text (lowercase or u ppercase)—use Transliterate.

Script Interface System-related issues:

* Hiding the Menu Bar (script icon)—save and restore MBarHeight.
¢ Don't use <Command><Space> (and arrow keys) for Command-key equivalents.

International Development Support Localizability Checklist 55

- VN

For more information on localizing your products, contact:

P Mauto Ugazio

‘ Developer Technical Support

Apple Computer s.p.a.

Via Rivoltana, 8

20690 Segrate Milano ITALY

Tel 1021 75741 - Tlx 530173 APPLE [
Fax 92) 7534303 - A Link ITA.DTS

International Development Support Intemnational Software Development

®, Macintosh’ Technical Notes
HyperCard® Stack 1985-88

Version 3.0
This package contains;
1 Manual Macintosh Technical Notes Stack User's Guide 1985-88
1 Set of Release Notes Macintosh Technical Notes 1985-88
2 Disks Macintosh Technical Notes, HyperCard Stack 1985-88, Disk 1

Macintosh Technical Notes, HyperCard Stack 1985-88, Disk 2

If you have any questions, please call:

1-800-282-2732 (U.S)
1-408-562-3910 (International)
1-800-637-0029 (Canada)

MO0215LL/A

6/15/89

	MacTechNotesTack1985-88
	doc20200929_16482400
	doc20200929_16484660
	mixed_pdf_83

	finale
	doc20200929_16560029
	doc20200929_16563455
	doc20200929_16571275
	doc20200929_16573039
	doc20200929_16590318
	doc20200929_17012166
	doc20200929_17015436
	doc20200929_17031498
	doc20200929_17033532
	doc20200929_17043268
	doc20200929_17044847
	doc20200929_17051100
	doc20200929_17071658
	doc20200929_17074520
	doc20200929_17083972
	doc20200929_17090765
	doc20200929_17105501
	doc20200929_17112878
	doc20200929_17130012
	doc20200929_17133289
	doc20200929_17154659
	doc20200929_17161536

